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Abstract

In F-theory, the strong-coupling limit of type IIB string theory, geometric properties of elliptic
�brations give rise to the massless spectrum of its corresponding low-energy e�ective theory. �e

typical approach in the literature is to assume that there exists a Calabi-Yau resolution of the
singular elliptic �bration. Via F/M-duality the massless spectrum can be understood in terms of
M2-brane wrappings of rational curves in the resolved �ber. However this approach complicates

whenever a Calabi-Yau resolution does not exist since a non-Calabi-Yau resolution breaks
supersymmetry in the dual M-theory. In this thesis it is shown that terminal, i.e. non-Calabi-Yau
resolvable, singularities are caused by uncharged localised ma�er. We establish the connection

between the number of localised ma�er multiplets at a terminal singularity and its Milnor number
which is an integer invariant of a singularity.

Zusammenfassung

In F-�eorie, dem Limes von Typ-IIB-Stringtheorie mit nicht-pertubativer String-Kopplung, sind
geometrische Eigenscha�en von elliptischen Faserungen verantwortlich für das masselose Spektrum der
e�ektiven �eorie. Typischerweise wurde in der Literatur bisher angenommen, dass eine Au�ösung der
singulären elliptischen Faserung existiert, die selbst Calabi-Yau ist. Mit Hilfe von F/M-Dualität kann das
masselose Spektrum im Bild von M2-Branen, die rationale Kurven in der aufgelösten Faser umhüllen,

verstanden werden. Diese Interpretation verkompliziert sich jedoch stark, sobald die elliptische Faserung
terminale Singularitäten, also Singularitäten, die nicht aufgelöst werden können ohne Supersymmetrie zu

brechen, besitzt. In dieser Arbeit wird gezeigt, dass diese Singularitäten von ungeladener lokalisierter Materie
verursacht wird. Wir entwickeln die Beziehung zwischen der Anzahl von Materie-Multiplets, die an einer

terminalen Singularität lokalisiert sind, und der Milnorzahl, einer Invarianten von Singularitäten.
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1. Introduction

�e processes of the physical world as we know it from experiments happen at energies far below the
Planck scale. �us they are well described by e�ective �eld theory. One essential property of e�ective
theories is that they are highly unconstrained and their parameters typically take arbitrary values.
�ere is a continuous in�nity of those theories which makes the whole situation fairly unsatisfactory.
�is is one of the reasons why it is worthwhile to study string theory. It is hoped that only a tiny
and perhaps discrete fraction of the set of all possible e�ective �eld theories is compatible with string
theory [Vaf05]. In other words not all e�ective �eld theories can be completed in the UV by a string
vacuum. At an intuitive level the reason for this is that one has to solve the equations of motion in
the chosen compacti�cation space which puts constraints from the topological side on the theory.
In this sense it is clear that a major part of studying string theory is to analyse topological and ge-
ometrical properties of the compacti�cation space. In this thesis we would like to analyse so-called
terminal singularities of F-theory compacti�cation spaces and give them a physical meaning. �e
starting point will be type IIB string theory. Some of its most important ingredients are extended
objects called Dp-branes, p being an odd integer, which are (p + 1)-dimensional subspaces of ten-
dimensional spacetime on which open strings end. Since stacks of Dp-branes host gauge theories,
they contribute essential parts to the ma�er spectrum. Besides, type IIB string theory possesses two
scalar �elds: the Ramond �eld C0 called axion and the �eld φ called dilaton, which determines the
string coupling. �ese two real scalar �elds can be combined into one complex scalar �eld τ called
axio-dilaton.
�e complex scalar τ is intimately related to D7-branes: for a D7-brane the supergravity solution of
τ in ten dimensions includes a logarithm which introduces a branch cut in the two normal directions
to the brane. �e induced monodromy SL(2,Z) acts on τ in the fundamental representation, i.e.
like a Möbius transformation. Generally speaking, multivalued �elds like τ do not allow for a proper
interpretation. Fortunately, type IIB string theory itself has an SL(2,Z) symmetry which acts on τ
in the exact same way. �us the problem of multivaluedness is cured. However, a formulation of the
full string theory being intrinsically SL(2,Z)-invariant does not immediately exist.
�is changed when Cumrun Vafa discovered F-theory [Vaf96] [MV96a] [MV96b]. He interpreted
the complex scalar τ as the complex structure modulus of an auxiliary elliptic curve which is itself
SL(2,Z) invariant. Put di�erently one a�aches a two-torus to every point of spacetime such that the
complex structure modulus of the torus point-wise coincides with the scalar �eld τ . �is construction
has been known to mathematicians for a long time: it is an elliptic �bration. F-theory on an elliptically
�bered Calabi-Yau manifold with baseBd (Bd being a complex d-dimensional manifold) leads to low-
energy physics in 10− 2d spacetime dimensions. Since we will focus on the case of six-dimensional
low-energy physics we will consider complex two-dimensional bases.
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Figure 1.1.: M-theory star.

It seems that F-theory is a twelve-dimensional theory. However, the two auxiliary dimensions are
very di�erent from the other ten spacetime dimensions. �is is related to the fact that no fundamen-
tal dynamical de�nition of F-theory exists to date. Nevertheless, it can be approached via di�erent
corners of the M-theory star (�gure 1.1): it is dual to the heterotic string, to M-theory on a vanishing
torus and it is the strong coupling limit of type IIB string theory.1

To be clear, studying F-theory on an elliptically �bered Calabi-Yau manifold Yd+1 means to anal-
yse its geometric properties which give rise amongst others to the massless spectrum in (10 − 2d)-
dimensional spacetime. One reason why it is worthwhile to study F-theory is that it allows for a
varying axio-dilaton. However, as soon as one allows the �eld τ to be non-constant along Bd it is a
mathematical fact that the �bration will become singular along a codimension-one locus Σ1. By this
we mean that there exists a (d−1)-dimensional hypersurface inBd to which a singular elliptic curve
is a�ached. Intuitively one can think about a singular elliptic curve as a pinched two-torus.
From the type IIB picture we know that the gauge degrees of freedom live on D-branes. In F-theory
the non-abelian part of the gauge group is encoded in the singularities of the elliptic �bration at codi-
mension one, i.e. real eight-dimensional objects called 7-branes. �ere is a classi�cation of singular
elliptic curves by Kodaira Kunihiko [Kod63] [Kod68] which is closely related to the classi�cation of
semi-simple Lie algebras. �e gauge group on a 7-brane is the Lie group associated to the respective
Lie algebra of the singular �ber [Ber+96]. To each codimension-one singularity one associates a non-
abelian factor of the total gauge group in the low-energy e�ective action. �e abelian factors of the
total gauge group are associated to global properties of the �bration (the Mordell-Weil group and the
Tate–Shafarevich group [BCV14]). In this thesis we will consider only gauge groups without abelian
factors, i.e. �brations with trivial Mordell-Weil group.
In the same way gauge groups and their adjoint representations are associated to codimension-one
singular loci; codimension-two singularities of the �bration give rise to charged ma�er representa-

1An introduction to F-theory is given in [Wei10] and [Den08].

2



tions [KV97]. Codimension-two singularities are located on top of codimension-one loci, i.e. at loci
where two codimension-one loci intersect. �e ma�er living at this type of loci will be charged under
the gauge group which is associated to the codimension-one locus. For completeness note that loci
of higher codimension also have a physical meaning (see [BHV09a] and [BHV09b] for codimension
three and [SW16] for codimension four). However, these loci are not present in our cases since we
consider only complex two-dimensional bases for a reason which will become obvious in a minute.
�e geometry of gauge groups is by now well-understood. In this thesis we focus on codimension-two
singularities and elucidate a novel aspect of them: In addition to charged ma�er (as has been known)
also localised, uncharged ma�er can be located at codimension two. In fact this uncharged ma�er
is in one-to-one correspondence which the terminal singularities, i.e. singularities which cannot be
resolved such that the resulting space is Calabi-Yau, of the elliptic �bration. What is the story behind
that?
When considering elliptic �brations with two-dimensional bases the low-energy e�ective theory is
six-dimensional N = (1, 0) supergravity. Its massless spectrum organises into hyper, vector and
tensor multiplets (and obviously one gravity multiplet). �e origin of vector and tensor multiplets in
F-theory compacti�cations is well-understood. In other words we know which geometric properties
of Y3 give rise to a vector or a tensor multiplet in the e�ective theory. In this work we would like
to focus on the uncharged hypermultiplets. It is known that their number is given by the number
of complex structure moduli of the total space Y3 plus one so-called universal hypermultiplet which
contains the overall volume modulus and is always present.
Now the singular elliptic curves come into play. Generally, the space Y3 will be singular. So far the
literature has focused on Calabi-Yau manifolds Yd+1 which allow for a resolution Ỹd+1 of the above
described singularity which is itself Calabi-Yau, called crepant resolution, as will be discussed in more
detail below. �is is needed in order not to break supersymmetry in the dual M-theory along the
Coulomb branch. Technically concepts like Hodge decomposition facilitate the computation of the
number of complex structure moduli a lot. It can be shown that in codimension two the singularities
are only resolvable if here exists only ma�er charged under some gauge group at these loci. As soon
as uncharged ma�er appears the singularities won’t be resolvable. �is can be understood in terms
of F/M-duality.
How are F-theory and M-theory related? F-theory on R1,5 × Y3 where Y3 is an elliptically �bered
Calabi-Yau with baseB2 is dual to M-theory on R1,4×Y3 [Vaf96] [Wit96]. �is statement means that
if one compacti�es the six-dimensional low-energy e�ective action of F-theory on a circle S1 one
obtains the e�ective theory of M-theory on Y3 [IMS97] [BG12]. �e radius of the compacti�cation
circle R and the volume of the �ber vol(T 2) are related to each other: R = 1/vol(T 2) in natural units.
�us the limit vol(T 2)→ 0 uncompacti�es the S1 and returns the F-theory. In this sense the auxiliary
�ber of F-theory which lacks a physical interpretation a priori becomes part of the physical spacetime
in the dual M-theory. �e F/M-duality is crucial for the analysis of F-theory models because with its
help one can extract information about the F-theory spectrum by considering the M-theory degrees
of freedom and map them to F-theory via the above described circle compacti�cation.
More concretely suppose that the elliptic �bration is singular along a codimension-one locus in the
base. �en the singularity gives rise to a gauge theory living of the corresponding 7-brane which
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1. Introduction

wraps the codimension-one locus and �lls R1,5 as explained above. Now consider the Cartan subal-
gebra of this gauge group with gauge potentials {Ai}. Under the above circle compacti�cation from
six to �ve dimensions a vector Ai maps to a 5d-vector Ai and a 5d-scalar ξi and combines into 5d
vector multiplets (Ai, ξi). Now the 5d action possess a Coulomb branch, i.e. we can give a VEV to the
scalars ξi. On the other hand consider a resolution Ỹ3 of Y3. A resolution is performed by introducing
a chain of rational curves P1

i in the singular �ber. Let us call the corresponding divisors by �bering
P1
i over the singular locus in the total space [Ei]. M-theory has a 3-form potential C3 in its massless

spectrum which can be reduced along the resolution divisors [Ei]: C3 =
∑

iAi ∧ [Ei]. In this fash-
ion they give rise to the Cartan potentials in the 5d theory. If one identi�es the scalar �elds ξi with
the Kähler moduli, i.e. the volumes, of the P1

i s it becomes clear that the resolution of the singularity
corresponds to moving on the 5d Coulomb branch, i.e. to allow for 〈ξi〉 6= 0 [IMS97]. �e origin of
the Coulomb branch is located at 〈ξi〉 = 0 for all i which is exactly the singular limit, i.e. the limit in
which all P1

i shrink to zero size.
So far we considered crepant resolutions, i.e. Ỹ3 is Calabi-Yau and thereby supersymmetry is unbro-
ken. In other words this is a �at direction in the Coulomb branch. �us all 5d states which are charged
under the Cartan U(1)s as described above will acquire a mass. Since crepant resolutions correspond
to non-trivial �ber volume of P1

i s the ma�er which is located at codimension-two and charged under
the gauge group will be become massive.
What changes if one considers F-theory on a singular Calabi-Yau Y3 which lacks a crepant resolution,
i.e. possesses terminal singularities at codimension-two? �e localised ma�er in the 6d e�ective the-
ory cannot acquire a mass in a supersymmetric way any longer as one moves along a Coulomb branch
in the dual M-theory. �is means that the ma�er cannot be charged under any U(1) gauge group fac-
tor in M-theory. Whenever massless ma�er is not charged it will remain massless when moving along
any �at direction in the Coulomb branch. �is indicates that there exist vanishing cycles in the �ber
of the elliptic �bration which cannot be resolved without breaking supersymmetry.
All in all, this explains why a terminal singularity necessarily leads to uncharged massless ma�er at
codimension two. In the literature a hint towards this fact was found in the special case of the so-
called I1 conifold model [BCV14] [MW15] which will be reviewed in section 6.2. �e main statement
of this thesis will be: At every terminal singularityP at codimension two there are locatedmP uncharged

hypermultiplets which are the cause for this singularity. BymP we denote the Milnor number of P which

is a singularity characteristic. In this fashion we develop for the �rst time a consistent picture of the
appearance of non-crepant singularities in F-theory compacti�cations. In section 5.1 we will make
this assertion concrete.
�e reason why we consider compacti�cations to six dimensions is that the six-dimensional super-
gravity possess additionally to the usual gauge and mixed abelian anomalies, which are present in all
even dimensions, gravitational anomalies and mixed non-abelian anomalies. �us it is highly con-
strained by anomalies and moreover other consistency features [KT09] [KMT10a] [KMT10b] [KT11].
�e gravitational anomaly which can only be cancelled if nH − nV + 29nT = 273 where nH , nV
and nT are the number of hyper, vector and tensor multiplets in the massless spectrum, respectively,
will be most important in our applications. �e variety of anomaly sources causes severe constraints
to consistent theories. Since string theory is anomaly-free, its six-dimensional low-energy e�ective
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theory has to be as well since anomalies are an IR-problem in the sense that a fundamental theory
is anomaly-free if and only if its low-energy e�ective theory is anomaly-free. With the help of the
anomaly constraints we know for sure whether a massless ma�er spectrum from F-theory is correct
or not. �us anomalies provide a very powerful tool to check all computations.

�is thesis is organised as follows.
Chapter 2: We start out with a general introduction to anomalies and then concentrate on anomalies
in six dimensions. An outline is going to provide information on how anomalies relate to topological
quantities and how they can be computed with the help of index theorems. �e �nal objective is to
calculate the anomaly polynomial for six-dimensional N = (1, 0) supergravity.
Chapter 3: In this chapter a quick introduction to supergravity in six dimensions is given. We would
like to understand how the massless ma�er �elds organise in supersymmetry multiplets and how the
anomalies arising from chiral �elds and (anti-)self-dual tensor �elds can be cancelled by the general-
ized Green-Schwarz mechanism.
Chapter 4: Now, we turn from �eld theory to string theory. �e goal is to provide a compact intro-
duction to F-theory which comprises all aspects which we need in the following. Additionally, we
link F-theory to supergravity, i.e. reveal which geometric properties of the elliptic �bration give rise
to which �elds in six dimensions.
Chapter 5: A�er our main assertion is stated it becomes clear that in order to be able to analyse our
models we need to review the calculation of the topological Euler characteristic χtop(Ỹ3) of [GM00]
and adopt it to our needs. Besides the concept of Milnor number is introduced and most of the notation
for the following chapters is de�ned.
Chapter 6: We consider some prototypal models which are sensitive to the main question we would
like to answer: How many hypermultiplets are located at di�erent enhancement types, most impor-
tantly at type II → III, IV enhancements? Additionally, we supplement the analysis of [GM00] and
[GM12] by explaining how the ma�er representations can be recovered in terms of M2-wrappings in
the resolved model, i.e. reversing the F-theory limit vol(T 2)→ 0.
Chapter 7: Finally, we consider some models with two identical gauge group factors and present how
the massless ma�er spectrum can be computed in these cases.
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2. Anomalies

Anomalies play a crucial role in consistency considerations of both the Standard model and theories
beyond the Standard model. Especially in the context of string theory and its derived low-energy
e�ective theories anomalies are of particular importance. In our context the anomaly constraints of
the low-energy e�ective supergravity in six dimensions of the considered F-theory models provide
an e�cient tool to check the correctness of the computed massless spectra.
Generally speaking the starting point when discussing anomalies is Noether’s theorem a result of
classical �eld theory: Whenever a theory is invariant under a continuous symmetry there exists a
conserved current. However it can happen that the so-de�ned current is not conserved in the asso-
ciated quantum theory in the sense that the conservation law does not hold as an operator equation.
�is phenomenon is called anomaly.
What are the implications of anomalies? A priori anomalies are not harmful to the quantum theory
since the classical theory and its symmetry is only part of the QFT formalism and has no direct phys-
ical interpretation. However, if the Noether current is coupled to gauge �elds, an anomaly destroys
the consistency of the theory since the quantisation procedure breaks down which crucially depends
on gauge symmetry (buzz word: BRST quantisation).
In the following we will consider two types of anomalies. First, singlet anomalies arise from a global
symmetry whose Noether current is not coupled to any external �elds. Second, the origin of non-
abelian anomalies are local symmetries of chiral fermions. �ey will give rise to gauge, gravitational
and mixed anomalies.
It is a well-known fact that anomalies a�ord a topological interpretation via index theorems [ASZ84]
which reveal the connection of di�erential operators on a manifold to topological properties of the
manifold itself. We will use this relation to compute the anomalies.
Another important fact about anomalies is Zumino’s descent formalism on which all anomaly calcu-
lations in even dimensions rely: �e non-abelian anomalies in d = 2n are in direct correspondence
to chiral anomalies in d = 2n+ 2 [Zum83] [ZWZ84].
Finally the gravitational anomalies we would like to employ in our F-theory context were �rst com-
puted by Alvarez-Gaume and Wi�en [AW84]. Part of this ground-breaking work is the proof that
type IIB supergravity (in d = 10) is anomaly-free despite its chiral spectrum. We will use the results
for d = 6. Many parts of the following chapter are based on the outline of [Avr06].

2.1. Generalities on Anomalies

For an introduction to anomalies we follow the outline of [Avr06]. As an example let us consider the
theory of massless Dirac fermions transforming in some representation of a gauge group and coupled
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2. Anomalies

to gravity. �e classical action of this theory is:

S =

∫
R2n

√
gψ̄i /Dψ.

�is action enjoys the axial symmetry:

ψ → ψ′ = eiαΓ2n+1ψ, ψ̄ → ψ̄′ = ψ̄eiαΓ2n+1 . (2.1)

Let us �nd the associated conserved current. To this end we follow the standard procedure, i.e. making
the global parameterα position-dependent and then remove this dependence again. So ifα is position-
dependent, it enjoys the following commutation relation with /D: [ /D,α(x)] = Γµ∂µα(x). Together
with the usual anti-commutation relation of the Γ-matrices ({Γµ,Γ2n+1} = 0) we can compute the
variation of the action under (2.1) with α position-dependent (assuming boundary terms vanish):

δS = S′ − S '
∫
ψ̄(1 + iαΓ2n+1)i /D(1 + iαΓ2n+1)ψ − ψ̄i /Dψ

' −
∫
ψ̄(αΓ2n+1 /D + /DαΓ2n+1)ψ

= −
∫
ψ̄ΓµΓ2n+1ψ︸ ︷︷ ︸

=:Jµ

∂µα =

∫
αDµJ

µ.

Removing the position dependence again and imposing δS = 0, because the transformation was a
symmetry in the �rst place, we see that Jµ is conserved:

DµJ
µ = 0. (2.2)

So far we considered the classical theory. Let us now turn to its quantum version. �e analogue to
the classical action is the quantum e�ective action Γ which is de�ned as the logarithm of the partition
function Z . We perform the calculations in Euclidean spacetime.

Γ = − logZ = − log

∫
DψDψ̄ exp(−S[ψ, ψ̄]). (2.3)

Our aim is to compute the variation ofZ and then combine it into the variation of Γ. �e Feynman path
integral integration measureDψDψ̄ will transform somehow under the classical symmetry transfor-
mation. If the symmetry is non-anomalous, the measure will be invariant. �erefore, we can expand
the Jacobian J of the transformation:

J = 1− i
∫
αG+O(α2). (2.4)

�e so-de�ned quantity G is a measure for the anomaly. If it vanishes, i.e. if the Feynman measure is
invariant, the theory is non-anomalous. Note that in (2.3) e−S also transforms:

e−δS = 1−
∫
αDµJ

µ +O(α2).
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2.2. Calculation of the Singlet Anomaly

�e above two relations can be used to calculate δZ :

δZ =

∫
Dψ′Dψ̄′e−S[ψ′,ψ̄′] −

∫
DψDψ̄e−S[ψ,ψ̄]

=

∫
DψDψ̄

(
Je−δS−S[ψ,ψ̄] − e−S[ψ,ψ̄]

)
=

∫
DψDψ̄(Je−δS − 1)e−S[ψ,ψ̄].

�en the variation to �rst order in α of the quantum e�ective action is given by:

δΓ = −Z−1δZ

= −Z−1 ·
∫
DψDψ̄

(
−i
∫
αG−

∫
αDµJ

µ

)
e−S[ψ,ψ̄]

=

∫
α (Dµ〈Jµ〉+ iG) .

For α constant again, we are back at the conservation law of Jµ in operator form. However, it is now
obstructed by the anomaly:

Dµ〈Jµ〉 = −iG.

At this point, we can clearly see that an anomaly, which is by de�nition a non-trivial transformation
behaviour of the Feynman integration measure, leads to the non-conservation of the current Jµ which
was conserved classically. Essentially the anomaly is encoded in the function G. �e integrated
version thereof ,

G(α) := α

∫
G = iα

∫
Dµ〈Jµ〉, (2.5)

will be called singlet anomaly.

2.2. Calculation of the Singlet Anomaly

In this section, we would like to simplify expression (2.5) further. Since we are in Euclidean spacetime
the operator i /D is hermitian. �erefore there exists an eigenbasis ψm(x) with:

i /Dψm(x) = λmψm(x), λm ∈ R,

which is orthonormal with respect to the inner product:

〈ψm, ψn〉 :=

∫
ψ†m(x)ψn(x) = δmn.

9



2. Anomalies

�e fermion �eld ψ(x) can be expanded in terms of these eigenfunctions:

ψ(x) =
∑
n

anψn(x) with an = 〈ψm, ψ〉,

ψ̄(x) =
∑
n

ψ̄n(x) ān with ān = 〈ψ̄, ψm〉.

�ere are two important remarks. First we choose the coe�cients to be Grassmann-valued such that
the basis functions are C-valued. Second, the sum

∑
n is a shorthand notation for a continuous sum.

Now we can explicitly compute how the Feynman measure transforms in order to make (2.4) explicit.
It is de�ned as:

DψDψ̄ =
∏
n,m

dan dām.

If the �eld ψ is transformed as:

ψ → ψ′ = (1 + iαΓ2n+1)ψ,

then the coe�cients of ψ′ are given by:

a′n = 〈ψn, ψ′〉 =
∑
m

〈
ψn, (1 + iαΓ2n+1)ψm

〉
am =:

∑
m

Cnmam,

ā′n = 〈ψ̄′, ψn〉 =
∑
m

ām
〈
ψm(1 + iαΓ2n+1), ψn

〉
=:
∑
m

āmCmn.

Put into words the transformation matrix C which transforms an into a′n is identi�ed. �us the
integration measure transforms like:

Dψ′Dψ̄′ =
∏
n,m

da′ndā
′
m = (detC)−2

∏
n,m

dandām.

�e minus sign in the exponent is due to the fact that the ans are Grassmann-valued. �is expression
can be rewri�en using the well-known and very useful corollary of Jacobi’s formula: log detC =

tr logC .1

(detC)−2 = exp
(

log(detC)−2
)

= exp
(
− 2 log detC

)
= exp

(
− 2 Tr logC

)
.

All in all,

Dψ′Dψ̄′ = e−2 Tr logC︸ ︷︷ ︸
=J

DψDψ̄.

1We denote by Tr a trace over the functional eigenbasis of /D and by tr a trace over the gamma matrix indices and the
group indices.
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We can expand the Jacobian J to linear order in α:

J ' 1− 2 Tr logC = 1− 2 Tr log(1 + iαΓ2n+1)︸ ︷︷ ︸
= iαΓ2n+1+O(α2)

' 1− 2iTr(αΓ2n+1)

= 1− 2i tr
∑
n

〈ψn, αΓ2n+1ψn〉.

Comparing this result to (2.4) and (2.5) we �nd:

G(α) = 2αTr Γ2n+1 = 2α tr
∑
n

〈ψn,Γ2n+1ψn〉. (2.6)

Note that the expression (2.6) is ill-de�ned. It is an in�nite sum over zeros since tr Γ2n+1 = 0.
�erefore, we need to regulate the expression in a gauge-invariant way:

G(α) = 2α lim
Λ→∞

Tr

(
Γ2n+1e

− 1
2

(
i /D
Λ

)2)
. (2.7)

2.3. Relation of Singlet Anomalies and Indices

Now we compute all possible types of singlet anomalies. �is was �rst done in [ASZ84]. We want to
follow the second approach presented in this paper. A more modern treatment of this topic is [SS04].
Our aim is to show that index theory and anomalies are intimately related.
First we consider the spin-1/2 chiral anomaly in d = 2n. We want to show that the anomaly can be
rewri�en in terms of the Dirac index of its classical equation of motion di�erential operator i /D.
Let G1/2(α) be the spin-1/2 chiral anomaly. Let us evaluate the trace in (2.7) explicitly. To this end,
we note that if ψn is an eigenvector of i /D with eigenvalue λn, then Γ2n+1ψn is also an eigenvector
of i /D but has eigenvalue −λn.2 Since i /D is hermitian its eigenvectors with di�erent eigenvalues are
orthogonal to each other. �erefore,

〈ψn,Γ2n+1ψn〉 = 0 for all n 6= 0.

In other words, the only contributions to the trace in (2.7) are the zero modes of i /D which we will
call ψi0, i = 1, . . . , N . �ey can be split into two irreducible representations of the Cli�ord algebra,
the positive and the negative chirality ones:

Γ2n+1ψ
i±
0 = ±ψi±0 .

�en (2.7) can be rewri�en in terms of the zero modes:

G1/2(α) = 2α
∑
i

〈ψi0,Γ2n+1ψ
i
0〉 = 2α

∑
i+

〈ψi+0 , ψ
i+
0 〉 −

∑
i−

〈ψi−0 , ψ
i−
0 〉


2�is follows from { /D,Γ2n+1} = 0.
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2. Anomalies

At this point we have to remember that we chose the eigenbasis such that the eigenvectors have unit
norm. So the sum over the positive chirality zero modes corresponds to the dimension of the kernel of
i /D acting only on positive chirality vectors. Put di�erently, de�ne i /D± := i /DP± with P± positive
and negative chirality projectors3 which makes the following simpli�cation possible:

G1/2(α) = 2α
(

dim ker i /D
+ − dim ker i /D

−
)

= 2α
(

dim ker i /D
+ − dim ker(i /D

+
)†
)

= 2α ind(i /D).

�us we have established the relation of the spin-1/2 chiral anomaly to the Dirac index of i /D. We are
now in the powerful position to employ the Atiyah-Singer index theorem for the curved space Dirac
operator [Alv83] [FW84]:

G1/2(α) = 2α ind(i /D) = 2α ·
∫
M2n

[
Â(R) chR(F )

]
2n
,

whereM2n is the physical spacetime. Â is the A-roof genus and chR(F ) is the Chern character of F
in the representationR.

�is is a remarkable result because it can be easily generalized to a spin-3/2 �eld and also a self-dual
(n−1)-form which are the �elds inN = (1, 0) supergravity in six dimensions which contribute to the
total anomaly (the details are presented below in chapter 3). �e analogue of the Dirac operator for
spin-3/2 �elds is the Rarita-Schwinger operator whose index can be calculated by an index theorem
as well:

G3/2(α) = 2α ·
∫
M2n

[
Â(R)(tr eiR/2π − 1) chR(F )

]
2n
.

Finally, consider the (n− 1)-form anomaly. In 2n = 4k dimensions, there exists the potential An−1

with a (anti-)self-dual �eld strength Fn. It gives rise to a gravitational singlet anomaly. Why is this
the case? Naı̈vely one might expect that a bosonic �eld cannot contribute to the anomalies. �e
answer lies in the representation theory of the Lorentz group. It is a fact that the antisymmetric
tensor representations of the Lorentz group with (anti-)self-dual �eld strengths are build as a tensor
product of two Weyl representations of equal chirality. �erefore, the anomaly is related to the index
of i /Dφ, the operator associated to a bispinor φαβ . Its index is given by the integrated Hirzebruch
polynomial L(R). However, it must be corrected for three reasons: First, the second index β should
be of same chirality as the �rst index and the potential An−1 should be real. �is leads to a factor 1

4 .
Additionally, we have to multiply by (−1) because An−1 obeys Bose rather than Fermi statistics. All
in all, the anomaly due to the self-dual (n− 1)-form is given by:

GA(α) = −α
2
·
∫
M2n

[L(R)]2n .

�e above three results can also be obtained by an explicit �eld theory calculation (see [AW84]).

3Note that i /D− = (i /D
+

)†.
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2.4. Wess-Zumino Consistency and Descent Equations

2.4. Wess-Zumino Consistency and Descent Equations

In this section we will establish the connection of gauge anomalies in even dimensions d = 2n and
chiral anomalies in d = 2n+ 2. We follow the outline of [Bil08] and [GSW85].
�e crucial ingredient of this correspondence is the Wess-Zumino consistency condition whose so-
lution is related to the characteristic classes trFn+1 via the so-called descent equations. �e Wess-
Zumino consistency condition will constrain the form of the anomalies under in�nitesimal gauge
transformations in even dimensions. Recall that chiral fermions are only present in even dimensions.
In odd dimensions they do not exist and therefore cannot give rise to any anomalies.

2.4.1. Wess-Zumino Consistency Condition

Let us consider an arbitrary in�nitesimal gauge transformation of a gauge theory. It has the form:

δεΓ[A] =

∫
M2n

εα(x)Aα(x).

In other words,

Aα(x) = −
(
Dµ

δ

δAµ(x)

)
α

Γ[A] =: Gα(x)Γ[A]. (2.8)

We are interested in the commutation relation of two consecutive in�nitesimal gauge transformations
which can be explicitly computed:

[Gα(x),Gβ(y)] = . . . = δ(x− y)CαβγGγ(x),

where Cαβγ are the structure constants of the Lie algebra of the gauge group. We can apply this to
the quantum e�ective action Γ[A] and get:

Gα(x)Aβ(y)− Gβ(y)Aα(x) = Cαβγδ(x− y)Aγ(x), (2.9)

which is the Wess-Zumino consistency condition [WZ71].
�is rather clumsy expression can be reformulated in BRST-language. Let S be the BRST-operator.
Recall its de�ning property SAµ = Dµc where cα(x) is the ghost �eld. �e action of S on any
functional F local in A can be interpreted in terms of the gauge anomaly:

S F [A]
chain rule

=

∫
(Dµc(x))α

δ

δAαµ(x)
F =

∫
cα(x)

(
−Dµ

δ

δAµ(x)

)
α

F

≡
∫
cα(x)Gα(x)F.

(2.10)

Clearly Γ is a local functional in A. So we can combine (2.8) and (2.10) and let S act on Γ:

S Γ[A] =

∫
d2nx cα(x)Aα(x) =: A[c, A].
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2. Anomalies

�e BRST-operator is nilpotent since it is a Grassmannian object. It follows that SA[c, A] = 0. One
can show by explicit computation of SA[c, A] that this statement is equivalent to (2.9). �us, we have
identi�ed anomalies as BRST-closed functionals of ghost number one.
To conclude this section let us consider irrlevant anomalies, i.e. anomalies which can be cancelled
by addition of a local counterterm to the action. In this sense they are only an artefact of of the
chosen action which is only de�ned up to a total derivative. Let us show that irrelevant anomalies
correspond to trivial BRST cohomology classes, i.e. A[c, A] = SF [A] for some local functional F . If
this is the case one can add the counterterm ∆S = −F to the action which results at leading order
in ∆Γ = −F . �en S(Γ + ∆Γ) = S(Γ − F ) = A − SF = 0. As we have shown above, S Γ is
the gauge anomaly of the theory. �us, we have cancelled the anomaly corresponding to a BRST-
trivial representative. So relevant anomalies are not only BRST-closed but also not BRST-exact. Put
di�erently relevant anomalies are non-trivial representatives of BRST cohomology classes of ghost
number one:

A[c, A] ' A[c, A] + SF [A] for a local functional F. (2.11)

�is is a bit unsatisfactory since we have not found a unique mathematical object characterising a
gauge anomaly yet. To construct such an invariant object will be our task for the next section.

2.4.2. Derivation of Descent Equations

�e descent formalism heavily depends on the language of characteristic classes of bundles and Chern-
Simons forms. We introduce both concepts only at an intuitive level. For more details the reader is
referred to standard maths literature. An introduction for physicists can be found in [Nak03].

Characteristic Classes

Let us consider a principle bundle on a topological space X . A characteristic class is a prescription to
associate a cohomology class ofX to the bundle. �is class measures the non-triviality of the bundle,
i.e. how much it di�ers from a simple global product. Since we do not need to dive deep into the maths
of principle bundles, let us follow the simpli�ed de�nition of characteristic classes of [Bil08].
A characteristic class P is a local form on a compact manifold M constructed from the curvature
2-form R or the �eld strength F of a gauge potential (gauge group G) such that its integral overM
is sensitive to non-trivial topology. Moreover let us de�ne Pm(F ) := trFm = trF ∧ . . . ∧ F (m
times).
It is a non-trivial fact that the Pms form a complete basis of any gauge-invariant polynomial P in F ,
i.e. P (g−1Fg) = P (F ) for all g ∈ G. Furthermore it can be easily shown that the Pm are actually
topological invariants.
�e reason we consider the Pms in the �rst place is the following property which naturally leads to
the de�nition of Chern-Simons forms.
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2.4. Wess-Zumino Consistency and Descent Equations

Claim: Pm is closed for allm.

In the convention with anti-hermitian gauge group generators the non-abelian �eld strength is
de�ned as F := dA + A2. �erefore, the exterior derivative is dF = dA ∧ A − A ∧ dA =

dA∧A+A3−A∧dA−A3 = F ∧A−A∧F . For matrix-valued di�erential forms the cyclicity
property of the trace generalizes to trω(q)ω(p) = (−1)pq trω(q)ω(p) for ω(p), ω(q) being a p,q-
form, respectively. �us, dPm = d trFm = m tr dF∧Fm−1 = m tr(F∧A−A∧F )∧Fm−1 = 0.
#

Chern-Simons Forms

Since the Pm are closed they are locally exact:

Pm(F ) = dQ2m−1(F,A) locally.

�e (2m−1)-formsQ2m−1(F,A) are called Chern-Simons forms. �ere are three important things to
note. First, Chern-Simons forms are only de�ned up to an exact piece. Second, they are de�ned only
for odd degree in A. Finally and perhaps most striking, Chern-Simons forms are not gauge invariant.
All three properties will play a crucial role in the following discussion. �e two lowest-rank Chern-
Simons forms are:

Q3 = tr
(
A ∧ F − 1

3A
3
)
,

Q5 = tr
(
A ∧ F 2 − 1

2A
3F + 1

10A
5
)
.

Just for fun let us check whether the expression forQ3 is correct. Use tr dF = tr (dA∧A+A∧dA):

dQ3 = tr
(
dA ∧ F −A ∧ dF − dA ∧A2

)
= tr

(
dA ∧ dA+���

��
dA ∧A2 −A ∧ dA ∧A+A2 ∧ dA−���

��
dA ∧A2

)
= tr

(
dA ∧ dA+ 2 dA ∧A2

)
= trF 2 X

Descent Equations

As we have already said Chern-Simons forms are not gauge-invariant. It seems that they are com-
pletely useless for any analysis of gauge theories. However appearances are deceptive. Actually,
Chern-Simons forms are central in the context of anomalies of gauge theories. �eir crucial property
is that the gauge-variation of a Chern-Simons form is closed,

d δvQ2m−1(F,A) = δv dQ2m−1(F,A) = δvPm(F ) = 0,

and therefore again locally exact:

δvQ2m−1(F,A) = dQ
(1)
2m−2(v, F,A) locally,
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2. Anomalies

where dQ(1)
2m−2 is de�ned only up to an exact piece. Additionally, recall that Q2m−1 was de�ned only

up to an exact piece, too: Q2m−1 ' Q2m−1 + dα2m−2. �us, δQ2m−1 ' δQ2m−1 + δ dα2m−2 =

δQ2m−1 + d δα2m−2. �erefore, Q(1)
2m−2 ' Q

(1)
2m−2 + δα2m−2. Altogether, dQ(1)

2m−2 is de�ned up to
an exact and a gauge piece.
To make the above explicit let us continue our two examples and calculate Q(1)

2 and Q(1)
4 .

Claim: δvtrAl ∧ F k = tr
[
(dv ∧Al−1 +A ∧ dv ∧Al−2 + . . .+Al−1 ∧ dv) ∧ F k

]
.

We proof the claim by induction. In our conventions δvA = dv + [A, v] and trF k is gauge
invariant.

• Initial step (l = 1): δv trA ∧ F k = tr
(
dv ∧ F k + [A, v] ∧ F k

)
= tr

(
dv ∧ F k

)
. X

• Induction step (l → l + 1): δvtrAl+1F k = tr
(
δvA ∧Al ∧ F k +A ∧ δv(Al ∧ F k)

)
. Plug-

ging in the induction hypothesis completes the proof.

#

�e above claim helps us to compute the two examples:

• δvQ3 = δvtr
(
A ∧ F − 1

3A
3
)

= tr
(
dv ∧ F − 1

3(dv ∧ A2 + A ∧ dv ∧ A + A2 ∧ dv)
)

. �e

expression simpli�es to δvQ3 = tr(dv ∧ dA). �us, Q(1)
2 = tr(v ∧ dA) up to exact terms.

• Similarly, δvQ5 = tr
[
dv ∧ (dA ∧ dA+ 1

2dA
3)
]

andQ(1)
4 = tr v∧d

(
A∧dA+ 1

2A
3
)

plus exact
terms.

Recap

For future reference we condense the essential results.

• �e properties of Pm := trFm are:

dPm = 0 = δvPm. (2.12)

• �e descent equations hold only locally and are given by:

Pm = dQ2m−1, δvQ2m−1 = dQ
(1)
2m−2. (2.13)

• �e objects Q2m−1 and Q(1)
2m−2 are de�ned up to:

Q2m−1 ' Q2m−1 + dα2m−2, (2.14)

Q
(1)
2m−2 ' Q

(1)
2m−2 + δα2m−2 + dβ2m−3. (2.15)

2.4.3. Relation of Descent Equations and Gauge Anomalies

A�er having introduced gauge anomalies and the descent formalism we can understand the interplay
of both. We will show how gauge anomalies (2.8) and the descent equations (2.13) are related. �e
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2.4. Wess-Zumino Consistency and Descent Equations

anomaly will be proportional to Q(1)
2m. �e ambiguity of de�ning the anomaly will correspond to

ambiguities (2.14) and (2.15). Via the descent equations we will �nd the term Pm+1 which is not
ambiguous. So we will characterise the gauge anomaly uniquely by the (2m+ 2)-form Pm+1.
It is a general QFT fact that anomalies must involve the Levi-Civita symbol εµ1...µ2m and thus can be
interpreted as a 2m-form Q

(1)
2m(c, A) which is of ghost number 1:

A[c, A] ∼
∫
M2m

Q
(1)
2m(c, A).

Recall the Wess-Zumino condition (2.11): SA = 0 and A 6= S(. . .) for consistent anomalies. Since S
acts like a gauge transformation onAwe can rewrite the descent equations as: Pm+1 = dQ2m+1 and
SQ2m+1 = dQ

(1)
2m (locally). We now claim that the so de�ned Q(1)

2m is a solution to the Wess-Zumino
condition.

Claim:
∫
M2m

Q
(1)
2m(c, A) is a solution to the Wess-Zumino condition

�ere are two things to show. First, we have to show that the expression is BRST-closed and then
we have to show that it is not BRST-exact.

1. SQ2m+1 = dQ
(1)
2m. So 0 = S(SQ2m+1) = S dQ

(1)
2m = −d(SQ

(1)
2m) because S is nilpotent

and d and S anti-commute. Since the auxiliary (2m + 2)-dimensional space may have
non-trivial topology it is not clear that closed forms are exact which is what we need to
�nish the proof. Because Q(1)

2m is of ghost number one and therefore linear in c, SQ(1)
2m will

be bilinear in the ghost �eld and can be assumed to be globally de�ned. In other words
the topology of the space can be chosen such that all closed 2m-forms are exact. �en,
SQ

(1)
2m = dα

(1)
2m−1 and S

∫
M2m

Q
(1)
2m = 0. For more details the reader is referred to [Bil08].

2. Suppose thatQ(1)
2m is exact; Q(1)

2m = Sα2m with α2m a function ofA only. �en SQ2m+1 =

dQ
(1)
2m = dSα2m = −Sdα2m. All in all, S(Q2m+1 + dα2m) = 0. �ere does not exist any

gauge invariant forms of odd degree. �us, already Q2m+1 + dα2m must vanish. �is is
the contradiction: Acting with d on the expression reveals dQ2m+1 = 0 but dQ2m+1 =

Pm 6= 0. �us the assumption is false and Q(1)
2m is not BRST-exact. Finally, we have to

show that the integrated version is not BRST-exact, too. To this end suppose
∫
M2m

Q
(1)
2m =

S
∫
M2m

β2m =
∫
M2m

Sβ2m. �e integrands of both sides of the equation can only di�er
by an exact term: Q(1)

2m + dγ
(1)
2m−1 = Sβ2m. But Q(1)

2m has been de�ned only up to an exact
term in the �rst place. We can rede�ne it and absorb dγ(1)

2m−1. It follows that Q(1)
2m = Sβ2m

which we have excluded already.

#

We can conclude that in even dimensions the gauge anomaly is given by:

A[c, A] = C

∫
M2m

Q
(1)
2m(c, A) + S(. . .), (2.16)

where C is a proportionality constant. It corresponds to CPm+1 via the descent formalism. If C = 0
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2. Anomalies

the anomaly is not relevant and can be compensated by local counterterms in the action.

2.5. The Anomaly Polynomial

So far we have outlined the relation of non-abelian anomalies in 2n dimensions and chiral anomalies in
2n+2 dimensions through the descent equations and we have already computed the singlet anomaly.
�us we are now able to actually compute the anomalies we are interested in. We follow [Avr06] again.
First rotate back to Minkowski spacetime (anomalyGM = −GE and quantum e�ective action ΓM =

iΓE). �en the anomalies are given by:

G(2n+1)(α) = − 1

π
α

∫
M2n+2

Î2n+2,

with

Î
1/2
2n+2 = 2π

[
Â(R) chR(F )

]
2n+2

,

Î
3/2
2n+2 = 2π

[
Â(R)(tr eiR/2π − 1) chR(F )

]
2n+2

,

ÎA2n+2 = 2π

[
1

2
· 1

4
· L(R)

]
2n+2

.

Recalling the descent equations we obtain the Minkowski anomalies in 2n dimensions:

dÎ2n+1 = Î2n+2, δv,λÎ2n+1 = −dÎ1
2n.

�us,

G(2n)(v, λ) =

∫
M2n

Î1
2n.

We are now in the position to actually compute the anomalies. In this thesis we are especially inter-
ested in the anomalies of six-dimensional supergravity. For this reason we focus on the case n = 3

from now on. It will turn out that a convenient rede�nition is:

I8 := −16 (2π)3Î8.

We now need the explicit formulae for the A-roof genus, the Chern character and the Hirzebruch
polynomial:

Â(R) = 1 +
1

(4π)2

1

12
trR2 +

1

(4π)4

(
1

360
trR4 +

1

288
(trR2)2

)
+ · · · ,

chR(F ) = 1− 1

(2π)2

1

2
trF 2 +

1

(2π)4

1

24
trF 4 − · · · ,

L(R) = 1− 1

(2π)2

1

6
trR2 +

1

(2π)4

(
− 7

180
trR4 +

1

72
(trR2)2

)
+ · · · .
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2.6. Anomaly Cancellation

We split our rede�ned I8 into the terms depending on F , R and both:

I
1/2
8 (F ) = 2

3trF 4, I
3/2
8 (F ) = 10

3 trF 4,

I
1/2
8 (R) = 1

360trR4 + 1
288(trR2)2, I

3/2
8 (R) = 49

72trR4 − 43
288(trR2)2,

I
1/2
8 (F,R) = −1

6trR2 trF 2, I
3/2
8 (F,R) = 19

6 trR2 trF 2,(
I

1/2
8 (FX , FY ) = 4trF 2

X trF 2
Y

)
, IA8 (R) = − 7

90trR4 + 1
36(trR2)2. (2.17)

�e expression in parenthesis is only present if the spin-1/2 �eld is charged under more than one
simple factor of the total gauge group.
�is is our �nal result. Now we can write down the anomaly of a six-dimensional theory with an
arbitrary spectrum by adding up the above contributions accordingly.

2.6. Anomaly Cancellation

In the last section we have given the explicit formulae for anomalies in arbitrary (even) dimensions.
�ey are encoded in the anomaly polynomial which is a (d+ 2)-form. In section 2.4 we have shown
that the anomaly polynomial is a unique representative of the anomaly whereas the actual expression
for the anomaly is not uniquely determined (see (2.15)). It was always possible to add a total derivative
dβd−1 or a pure gauge term δαd to the action. �is reveals the two ways in which potential anomalies
arising through a chiral spectrum can be cancelled:

1. Vanishing of the anomaly polynomial. In the case of ten-dimensional type IIB supergravity it
is also called “miraculous” anomaly cancellation.

2. Vanishing of Q(1)
d by adding a counterterm to the action, i.e. showing that the anomaly is not

a relevant anomaly. In the case of ten-dimensional type I supergravity coupled to Yang-Mills
theory it is referred to as anomaly cancellation via the Green-Schwarz mechanism.

�e �rst one is called “miraculous” because type IIB supergravity has a chiral spectrum (a self-dual 5-
form, two real chiral gravitinos and two anti-chiral Majorana dilatinos). �erefore it was believed to be
anomalous for a long time. But if one carefully computes the contributions to the anomaly polynomial
I12, one �nds that it identically vanishes. From the �eld theoretic point of view this insight came as a
big surprise. However the string theory community must have known that the hasty conclusion that
type IIB supergravity is anomalous had to be wrong because it is the �eld theoretical limit of type IIB
string theory which is de�nitely anomaly-free.
In our theories the anomalies will not cancel miraculously. �erefore, we focus on the Green-Schwarz
mechanism and follow the lines of [GS84].
Let us consider ten-dimensional N = 1 supergravity coupled to a gauge group G. �e gauge and
gravitational anomalies in ten dimensions can be described by the gauge invariant anomaly polyno-
mial I12 which can be computed with the help of index theorems. Let us introduce some notation.
Analogously to the Yang-Mills �eld strength and potential F = 1

2Fµνdx
µ ∧ dxν = dA+A∧A (with
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2. Anomalies

anti-hermitian generators) we introduce the curvature 2-form for gravity:

R =
1

2
Rµνdx

µ ∧ dxν = dω + ω ∧ ω,

where ω is a 10× 10 antisymmetric matrix in the fundamental representation of SO(1, 9).

�e anomalies of the theory come from various sources. First, the supergravity multiplet contains a
le�-handed Majorana-Weyl gravitino and a right-handed Majorana-Weyl spinor. Both are not charged
under the gauge group. �erefore we have to include only the R and not the F dependence in the
anomaly polynomial. Additionally, there are n = dimG copies of a le�-handed Majorana-Weyl
spinor. By supersymmetry they transform in the same representation as the gauge �elds, the adjoint
representation. �us we have to take traces over the adjoint representation. To compute the anomaly
we have to add up all contributions to the anomaly polynomial according to the above outline [Bil08]:4

64(2π5) I12 = 64(2π5)
(
I

3/2
12 (R)− I1/2

12 (R)︸ ︷︷ ︸
SUGRA sector

+ I
1/2
12 (F,R)︸ ︷︷ ︸
SYM sector

)
(2.18)

=

(
dimG− 496

5670
trR6 +

dimG+ 224

4320
trR4 trR2 +

dimG− 64

10368
(trR2)3

)
−(trF 2)

(
1

180 trR4 + 1
144 (trR2)2

)
+ 1

576 trF 4trR2 − 1
360 trF 6.

(2.19)

It seems that the theory is anomalous. However, we will escape through a loophole: If I12 factorises
into I12 = (trR2 + k trF 2) ∧ I8 where I8 is a closed gauge-invariant 8-form depending on F and R
and k is a real number, then there exists a local counterterm ∆Γ which cancels the anomaly.

Let us show this assertion. Let B = Bµνdx
µ ∧ dxν be the 2-form potential form of the N = 1

supergravity multiplet. It turns out that one has to de�ne its �eld strength H in the following way in
order to be gauge invariant and consistent with supersymmetry:

H = dB − k̃ Q3(A,F ) + k Q3(ω,R),

with k, k̃ being numbers which depend on the normalization ofB andH and the conventions for the
trace in Q3. Let us rescale and set k̃ = 1. Because H is gauge-invariant and δQ3 = Q

(1)
2 :

δv,λB = Q
(1)
2 (v,A, F )− kQ(1)

2 (λ, ω,R).

De�ne ∆Γ =
∫
B ∧X8 where X8 is closed and gauge-invariant. �is is the counterterm which we

add to the action in order to cancel the anomalies of the above form. So let us show that this ∆Γ leads
to the contribution ∆I12 = (trR2 + k trF 2) ∧ I8 in the anomaly polynomial. �e induced anomaly

4Note that the trace over powers of F is in the adjoint representation whereas the traces of the curvature form are taken
in the fundamental representation.
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2.6. Anomaly Cancellation

A is given by:

A = δv,λ(∆Γ) =

∫
δv,λ(B) ∧X8 since X8 is gauge invariant.

=

∫ (
Q

(1)
2 (v,A, F )− k Q(1)

2 (λ, ω,R)
)
∧X8

= −
∫ (

δQ3(A,F )− k δQ3(ω,R)
)
∧X7 since X8 = dX7 and dQ(1)

2 = δQ3.

=:

∫
I

(1)
10 .

Now, using the descent formalism we ascent from I
(1)
10 to I12:

dI
(1)
10 =

(
δQ3(A,F )− k δQ3(ω,R)

)
∧X8 since δQ3 is closed.

!
= δv,λI11

Because X8 is gauge-invariant I11 is given by:

I11 =
(
Q3(A,F )− k Q3(ω,R)

)
∧X8.

Finally, the contribution to the anomaly polynomial is:

I12 = dI11 =
(
Q4(F )− k Q4(R)

)
∧X8.

By de�nitionQ4(F ) = trF 2 andQ4(R) = trR2, which shows the assertion: Whenever the anomaly
polynomial factorises into I12 = (trR2+k trF 2)∧I8 the anomaly is not relevant and can be cancelled
by adding a local counterterm to the action.
�e next step is to show under which conditions the anomaly polynomial factorises. Of course the
trF 6 and the trR6 terms have to vanish in order to satisfy the factorisation condition. �e la�er �xes
dimG = 496.
At �rst glance the trF 6 won’t vanish. However, there exist certain gauge groups in which trF 6

can be expressed as a linear combination of trF 4 trF 2 and (trF 2)3. To cut a long story short there
are exactly two Lie groups without abelian factors which meet the conditions: SO(32) and E8 ×E8.
�eories with abelian factors su�er from other inconsistencies. As a side remark, the results form this
section establish string universality in ten dimensions: Every consistent ten-dimensional supergravity
is the low-energy limit of a string theory.
�e main concern of this thesis is six-dimensional supergravity where a similar mechanism is at work
to cancel the anomalies. However the details are much more complicated. �e intuitive reason for
this is that there are more than one self-dual tensor �elds in six-dimensional supergravity opposed to
only one self-dual tensor in ten-dimensional supergravity. Although this complicates the calculation
a lot, the general picture remains the same. �e details were worked out by [Sag92].

21





3. N = (1, 0) Supergravity in Six Dimensions

In this chapter we would like to give an overview over the most important features of N = (1, 0)

supergravity in six dimensions for our purposes. As a rough overview: �e �elds organise into one
gravity multiplet and an arbitrary number of tensor, vector and hypermultiplets. All multiplets con-
tribute to the anomaly since all contain chiral �elds or (anti-)self-dual tensors. Finally it is described
how the generalized Green-Schwarz mechanism is able to cancel the anomalies in certain cases which
are constrained by a number of equations.

3.1. Multiplet Structure

ByN = (1, 0) in six dimensions we mean supersymmetry generated by eight real supercharges. �e
massless states form representations of the li�le group in six dimensions, SO(4), which is isomorphic
to SU(2)×SU(2). Restricting to spins less or equal two the di�erent types of multiplets are summa-
rized in table 3.1 [NS97]. Certainly, there is one gravity multiplet. �e number of tensor, vector and
hypermultiplets are variable and will be denoted by nT , nV and nH , respectively.
Having a look at the multiplet structure one immediately notices two things. First the spectrum is
chiral and therefore potentially the source of anomalies. Second it comprises (anti-)self-dual 2-forms.
Both properties will be crucial in the following discussion.
�e appearance of (anti-)self-dual 2-forms is conspicuous. �ey obstruct a naı̈ve Lagrangian formu-
lation of the theory since the standard kinetic term will identically vanish by the duality condition.1

However, there exists a so-called pseudo-action. It is an action which leads to the correct classical
equations of motion a�er imposing the duality constraints. In other words, the duality constraints
are imposed on the equations of motion and not directly on the action. �erefore it is called pseudo-
action. In order to write down its bosonic part we need some notation.

• 2-forms. �e 2-form from the gravity multiplet and the tensor 2-forms are combined into
Bα, α = 1, . . . , nT + 1. �e scalars from the tensormultiplet are viewed as coordinates jα on
the scalar manifoldMscalar = SO(1, nT )/SO(nT ). We can introduce a metric Ωαβ with mostly
minus Lorentzian signature (1, nT ) subject to the constraint Ωαβj

αjβ = 1. Additionally we
can de�ne another metric onMscalar: gαβ := 2jαjβ − Ωαβ where we raise and lower indices
with Ωαβ : jα := Ωαβj

β . gαβ is positive de�nite. Finally let Gα be the �eld strength of the
2-form potential Bα.

1Actually, it is possible to write down a Lagrangian in the case nT = 1. Here the self-dual 2-form in the gravity multiplet
can be combined with the anti-self-dual 2-form of the tensormultiplet which gives a 2-form without duality constraints.
�is was worked out in [NS97].
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3. N = (1, 0) Supergravity in Six Dimensions

One Gravity multiplet One graviton (1,1)

(gµν , ψ
−
µ , B

+
µν) One le�-handed Weyl gravitino 2 (1

2
,1)

One self-dual 2-form (1,0)

nT tensormultiplets One anti self-dual 2-form (0,1)

(B−µν , χ
+, φ) One right-handed Weyl tensorino 2 (0, 1

2
)

One real scalar (0,0)

nV vectormultiplets One vector (1
2
, 1
2

)

(Aµ, λ
−) One le�-handed Weyl gaugino 2 (1

2
,0)

nH hypermultiplets One right-handed Weyl hyperino 2 (0, 1
2

)

(ψ+, 4ϕ) Four real scalars 4 (0,0)

Table 3.1.: �e multiplets of N = (1, 0) supergravity in six dimensions. In the last column the
SU(2)× SU(2) representation is displayed.

• Vectors. For brevity let us consider a gauge groupGwith only one simple factor. Let g be the Lie
algebra ofG andA be the g-valued gauge 1-form. �en F := dA+A∧A is the associated non-
abelian �eld strength. We can de�ne the Chern-Simons form ωCS := tr (A∧dA+ 2

3A∧A∧A)

where tr is the trace in the respective representation of g. �e two basic properties of the
Chern-Simons form are (see section 2.4.2):

δωCS = tr dλ ∧ dA, dωCS = trF ∧ F.

• Hyper Scalars. �ere are four real scalars in each hypermultiplet: qU , U = 1, . . . , 4nH . �ey
can be viewed as real coordinates of a quaterionic manifold with metric hUV . �e covariant
derivative isDqU := dqU+AI(TRI q)

U where I runs over the generators of the gauge group and
TRI are the generators acting on qU in some representation R. As the details are not important
for our purposes the reader is referred to [FS90] and [And+97].

• Gravity. For the graviton we employ the vielbein formalism. ω is the so(1, 5)-valued spin
connection 1-form. It is determined by the torsion-free condition de + ω ∧ e = 0. �en δw =

dl + [ω, l] where l is a so(1, 5)-valued 0-form. �e �eld strength is R := dω + ω ∧ ω, the
curvature 2-form. Analogously we can de�ne the gravitational Chern-Simons form ωCSgrav :=

tr(ω ∧ dω + 2
3ω ∧ ω ∧ ω) with the transformation law δωCSgrav = tr dl ∧ dω and the exterior

derivative dωCSgrav = trR ∧R. LetR be the curvature scalar.

�en the pseudo-action is given by:

S =

∫
M6

1

2
R ∗ 1− hUVDqU ∧ ∗DqV −

1

4
gαβG

α ∧ ∗Gβ − 1

2
gαβdj

α ∧ ∗djβ

−2 Ωαβj
αbβtrF ∧ ∗F − V ∗ 1

One can summarize that a six-dimensional theory with gravity and N = (1, 0) supersymmetry is
characterised by the following data:
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3.2. Anomaly Cancellation and the Generalized Green-Schwarz Mechanism

F/R

F/R

F/R

F/R

+

F/R

F/R

F/R

F/R

= 0

Figure 3.1.: Green-Schwarz mechanism in six dimensions. �e wavy lines shall represent the �elds F
and R and the straight lines stand for the two-forms of the theory.

1. �e number of tensormultiplets nT .

2. �e gauge group G which determines the number of vectormultiplets nV = dimG.

3. �e representation R under which the hypermultiplets transform. �is determines amongst
others the number of charged and uncharged hypermultiplets.

Naturally a question arises: Are all possible choices of the above three parameters allowed or do
speci�c combinations lead to inconsistent theories? �e answer is tightly connected to the anomalies
of the theories and the possibility to cancel them.

3.2. Anomaly Cancellation and the Generalized Green-Schwarz
Mechanism

From section 2.5 we know that anomalies in six-dimensional supergravity are encoded in the 8-form
I8 from which we could compute the actual anomaly via the descent formalism. All we need to do
in order to analyse the anomalies is to combine table 3.1 and expressions (2.17) with the number of
hyper, vector and tensormultiplets of the theory of consideration.
Anomaly cancellation in six dimensions works similar to anomaly cancellation in ten dimensions via
the Green-Schwarz mechanism (see section 2.6). However it is much more complicated since there
are tensormultiplets in the theory which means that we are faced with more than one (anti-)self-
dual 2-form. In 1992 Augusto Sagno�i generalized the Green-Schwarz mechanism to six dimensions
[Sag92]. As in ten dimensions the anomaly polynomial I8 has to meet a factorisation condition which
implies that the anomaly can be cancelled by a local counterterm (see �gure 3.1). To state the result
we generalize the notation to more than one simple gauge group factor: Let us denote their respective
�eld strengths by Fi. trFi is the trace in the adjoint representation of the gauge group factorGi. �en
the factorization condition is [Tay11]:

I8 = 1
2Ωαβ I

α
4 ∧ I

β
4 with Iα4 = 1

2a
αtrR2 +

∑
i

bαi
2
λi

trF 2
i , (3.1)

where aα, bαi are in R1,T and λi are the normalization constants for each simple group factor Gi (e.g.
λSU(N) = 1, λE8 = 60).
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3. N = (1, 0) Supergravity in Six Dimensions

Whether the anomaly polynomial factorizes or not depends on the chosen gauge group, the number of
tensormultiplets and the chosen ma�er representations. In this way anomaly cancellation constraints
the space of consistent six-dimensional supergravities.

In the sequel we would like to translate condition (3.1) into a bunch of tangible equations which must
be satis�ed by a consistent spectrum. In the anomaly polynomial there are terms proportional to
trR4, trF 4, (trR2)2, trF 2 trR2 and so forth. Let us demonstrate by a few examples how to arrive at
the actual constraints.

The trR4 and (trR2)2 terms. From (2.17) we have the following contributions:

I
1/2
8 (R) = 1

360trR4 + 1
288(trR2)2,

I
3/2
8 (R) = 49

72trR4 − 43
288(trR2)2,

IA8 (R) = − 7
90trR4 + 1

36(trR2)2.

Recall that for fermions of opposite chirality and anti-self-dual 2-form one has to add the terms with
opposite sign. Taking a look at table 3.1 we conclude:

I8(R) = −I3/2
8 (R) + IA8 (R) + nT

[
I

1/2
8 (R)− IA8 (R)

]
− nV I1/2

8 (R) + nHI
1/2
8 (R)

= 1
360 (nH − nV + 29nT − 273) trR4 + 1

288 (nH − nV − 7nT + 51) (trR2)2.

Let us analyse the two terms in turn. Comparing to (3.1) one observes that the term proportional to
trR4 has to vanish. �us, anomaly cancellation constraints the spectrum by

nH − nV + 29nT − 273 = 0, (3.2)

which is a result we will use many times in the sequel. Obviously, the term proportional to (trR2)2

is constrained as well:

1
2 ·
(

1
2

)2 · (a · a)
!

= 1
288 (nH − nV − 7nT + 51)

Simplifying and plugging in (3.2) gives:

a · a = 9− nT .

The trF 4 term. First note that the gravity and the tensormultiplets are not charged under the
gauge group. �erefore only the gauginos and hyperinos contribute to the trF 2k terms. Let niR be
the dimension of the representationR of gauge groupGi under which the hypermultiplets transform.
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3.2. Anomaly Cancellation and the Generalized Green-Schwarz Mechanism

Rep. AR BR CR

� 1 1 0
Adjoint 2N 2N 6

Antisym. N − 2 N − 8 3

Table 3.2.: Values of group theoretic constants AR, BR and CR for SU(N), N ≥ 4. For SU(2) and
SU(3), AR is given in the table, BR = 0 and CR is computed by CR + BR/2 from the
table with N = 2, 3. [Tay11][Erl94]

�en there are the following contributions:

I8(F )|F 4 =
∑
i

[
−I1/2

8 |F 4 +
∑
R

niRI
1/2
8 |F 4

]

= −2
3

∑
i

[
trF 4

i −
∑
R

niRtrRF
4
i

]
.

Introducing the notation trRF
4 := BR trF 4 + CR(trF 2)2 and imposing I8(F )|F 4 = 0 we obtain

the constraint:

Bi
Adj. −

∑
R

niRB
i
R = 0.

All constraints. �e other terms are analysed in a similar fashion. Let us summarize all constraints
[Tay11]:

trR4 : nH − nV + 29nT − 273 = 0, (3.3)

trF 4 : 0 = Bi
Adj. −

∑
R

niRB
i
R, (3.4)

(trR2)2 : a · a = 9− nT , (3.5)

trF 2trR2 : a · bi = 1
6λi

(
AiAdj. −

∑
niRA

i
R

)
, (3.6)

(trF 2)2 : bi · bi = 1
3λ

2
i

(∑
niRC

i
R − CiAdj.

)
, (3.7)

trF 2
i trF 2

j : bi · bj =
∑
R,S

nijRSA
i
RA

j
S for i 6= j. (3.8)

nijRS is the number of ma�er �elds transforming in the R× S representation of Gi ×Gj . �e values
of the group theoretical constants AR, BR and CR are given in table 3.2.2

Note that we considered semi-simple gauge groups only. If U(1) factors are present it is still possible
to cancel the anomalies but the whole formalism is more involved [Erl94][Hon06].
�e above constraints (3.4) to (3.8) are necessary conditions which must be met in order to have a
consistent theory. Our analysis in the following chapters will rely heavily on these equations.

2Note that there is an additional factor two in equation (3.8) in [Tay11]. By explicit computation and comparison to e.g.
[Avr06] one can con�rm that this factor is not present and presumably is a typo.
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4. F-theory

F-theory is the non-pertubative formulation of type IIB string theory. It is able to capture strong
coupling behaviours and can handle compacti�cations with varying axio-dilaton. F-theory can be
approached from three corners of the M-theory star:

• F-theory is dual to E8 × E8 heterotic theory.

• F-theory is strongly coupled Type IIB theory with 7-branes and varying string coupling.

• F-theory is dual to M-theory on a torus T 2 with area(T 2)→ 0.

In this thesis we focus on the la�er two. In Type IIB there are two massless real scalars: the dilaton φ
and the axion C0. �ey can be combined into a complex scalar �eld, the axio-dilaton:

τ := ie−φ + C0 ≡
i

gs
+ C0.

�e axio-dilaton is only de�ned up to the SL(2,Z) action:

τ → aτ + b

cτ + d
, with

(
a b

c d

)
∈ SL(2,Z).

Besides we note that there is a natural SL(2,Z) action on the complex structure of a two-torus T 2.
Pu�ing those two ideas together marks the birth of F-theory in 1996 [Vaf96]. Cumrun Vafa introduced
a �ctitious elliptic curve (i.e. a two-torus) and identi�ed its complex structure with the axio-dilaton.
Varying τ along ten-dimensional spacetime corresponds to variation of the complex structure modu-
lus of the auxiliary elliptic curves. �is construction is a standard object in geometry: it is an elliptic
�bration. In other words we a�ach to each point of ten-dimensional spacetime of IIB theory an elliptic
curve. �e non-triviality of the �bration is a measure for how strongly the axio-dilaton varies. Note
that the elliptic �ber is only a book-keeping device, an auxiliary object, which is a priori not part of
physical ten-dimensional spacetime. However, we will see in section 4.2 that this understanding can
be modi�ed in the context of M-theory.
As a concluding remark note that the above is a sometimes misleading way to think about F-theory. To
determine the details of the e�ective action one has to approach F-theory via its duality to M-theory.
�e reader might wonder whether a �eld theoretical description of F-theory, a de�nition from �rst
principles, exists. To date such a fundamental description is not known.
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4. F-theory

4.1. F-theory via Type IIB String Theory

Our �rst approach to F-theory is via type IIB string theory since it is probably the most intuitive one.
Type IIB string theory is invariant under an SL(2,Z) transformation which enables us to de�ne F-
theory. We will consider the D-brane solutions of ten-dimensional type IIB supergravity and observe
that the solution for D7-branes is special: It involves a logarithm which does not approach zero in-
�nitely far away from the brane. �is is the starting point for F-theory. �e following outline is based
on [Hog12].

4.1.1. Type IIB String Theory and SL(2,Z) Invariance

�e low-energy e�ective theory of type IIB string theory is type IIB supergravity. �is theory is chiral,
meaning that both supersymmetry generators have the same ten-dimensional chirality. We have 32
real supercharges (two Majorana-Weyl spinors) with R-symmetry SO(2)R ' U(1)R. �ere exists a
unique linear representation, a multiplet, of the extended N = (2, 0) Poincaré algebra with spins ≤
2. �e bosonic part of its decomposition is a graviton gµν , a 2-form B2, a real scalar φ called dilaton,
in the RR-sector the form �elds C0, C2 and C4 where C0 is called axion. �e p-form potentials have
�eld strengths:

H3 = dB2, Fp+1 = dCp, for p = 0, 2, 4.

F5 is a self-dual �eld strength. �e p-form �elds give rise to Dp-branes with p = −1, 1, 3, 5, 7 to which
C0, C2, C4 can couple electrically or magnetically. Additionally, there is the fundamental string F1 to
whichB2 couples. �e D1-brane is also calledD-string and the D(-1)-brane is referred to asD-instaton.

Due to the presence of a self-dual �eld strength, there is no standard covariant action which deter-
mines the dynamics completely. However it is possible to write down an action which leads to the
correct equations of motion. �e duality constraint must be imposed directly on the level of the
equations of motion.

A�er introducing τ = C0 + ie−φ and G3 = F3 − τH3 one can write the type IIB action in the
following form [Blu+07]:

SIIB =
1

2κ2

∫
d10x
√
−g
(
R− 1

2

∂τ∂τ̄

Im(τ)2
− 1

2

G3 ∧ ∗G3

Imτ
− 1

4
F̃5 ∧ ∗F̃5

)
+

1

8iκ2

∫
C4 ∧G3 ∧ G̃3

Imτ

(4.1)

�is action is manifestly invariant under the SL(2,Z) transformation:

τ → aτ + b

cτ + d
,

(
C2

B2

)
→

(
a b

c d

)
·

(
C2

B2

)
, C4 → C4, with

(
a b

c d

)
∈ SL(2,Z),
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4.1. F-theory via Type IIB String �eory

because the �eld strength F̃5 is invariant and the other �elds transform as:

G3 →
G3

cτ + d
, Im(τ)→ Imτ

|cτ + d|2
, ∂τ → ∂τ

(cτ + d)2
.

�us we have demonstrated that this symmetry holds in the low-energy e�ective theory of type IIB
string theory. �ere are strong arguments that this symmetry is actually a symmetry of the whole
string theory (see [BLT12]).

4.1.2. Supergravity Brane Solutions and Backreaction

Now we would like to concentrate on D-branes and their solutions in supergravity. As their de�ning
feature D-branes have RR-charge and non-zero tension. �erefore they backreact gravitationally on
the geometry and via the standard coupling on the p-form �elds. When dealing with these backre-
actions the standard procedure is to take the probe approximation. �is means that one neglects the
backreaction of the brane on the geometry far away from the brane.
�is reasoning can be motivated by the following argument [Wei10]. Intuitively a D-brane is source
for the background �elds which we denote symbolically by Φ. Such a source leads to a Poisson
equation in the normal directions. For a Dp-brane we have n = 9 − p normal spatial directions. In
those normal dimensions the D-brane looks like a point. �erefore the Poisson equation generally
reads:

∆Φ ∼ δ(r),

where r is the distance to the brane. �e equation is solved by:

Φ(r) =

log r for n = 2,

1
rn−2 for n > 2.

(4.2)

We see that for n > 2 the probe approximation is justi�ed but for n = 2 the argument is not valid! �e
la�er case corresponds to D7-branes. �ere are two problems. First, log r does not approach zero for
r →∞ and second, the logarithm introduces a branch cut, i.e. the background �eld τ is multivalued.
Let us examine this phenomenon more explicitly. A D7-brane is an electric source for an 8-form
potential. So we have [HW97]:

d ∗ F9 = δ(z − z0),

where z = x8 + ix9 is a complex coordinate in the normal directions and the brane is located at
z = z0. Integrate the relation:

1 =

∫
C
d ∗ F9

Stokes
=

∮
S1

∗F9 =

∮
S1

F1 =

∫
S1

dC0.

We can read o�: Encircling the brane once leads to an axion shi� C0 → C0 + 1 or equivalently
τ → τ + 1. �is is a called a monodromy. Note that this monodromy is physically consistent since
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4. F-theory

this transformation is the usual gauge transformation of the axion.
More generally, we have to consider so-called [p, q]-branes. �ese are objects on which (p, q)-strings
can end. (p, q)-strings are a generalisation of the fundamental string. �e fundamental string is
electrically charged under the NSNS-�eld B2. Additionally, we have D1-branes in the theory. �ese
are strings which are charged under the RR-�eld C2. A (p, q)-string carries p units of electric B2-
charges and q units of electric C2-charges. �ese more general strings will induce a full SL(2,Z)

monodromy. Note that it is in principle possible to transform a general [p, q]-brane into a D7-brane,
i.e. p = 1 and q = 0. However this is only possible locally and not simultaneously for several 7-branes.
We will come back to this in section 4.1.3.
One might think that this SL(2,Z) monodromy complicates the physical interpretation of the back-
ground. But there is a way out: Recall that Type IIB string theory has an SL(2,Z) symmetry as we
have seen at least in the low-energy limit in section 4.1. Hence our multivalued background �elds are
physically single-valued exploiting the SL(2,Z) symmetry.

4.1.3. Elliptic Fibrations

In the last section we have seen how the monodromy of the logarithm, which comes into play via
the two-dimensional Poisson equation, perfectly �ts to the symmetry of Type IIB string theory. �us
the multivaluedness of τ is not physical but an artefact of the formulation. Our next aim is to �nd a
formulation for which the SL(2,Z) invariance is intrinsic. We follow the lines of [Cec10].
Vafa’s crucial idea [Vaf96] was to interpret τ as the complex structure modulus of an elliptic curve.
It stands to reason since elliptic curves enjoy a SL(2,Z) symmetry as well. In other words we take
our ten-dimensional spacetime X10 and a�ach an elliptic curve to every point of X10 such that the
complex structure varies over X10 in the same way as τ , the axio-dilaton. In the maths literature
this construction is called elliptic �bration. It is a general fact that elliptic curves can be wri�en in
Weierstrass form:

y2 = x3 + fxz4 + gz6, (4.3)

where x, y, z are coordinates of P1,1,2, the ambient space of the elliptic curve, and f and g are sections
of a line bundle L of the base:

f ∈ O(L4), g ∈ O(L6).

A standard result in the theory of elliptic curves is that an elliptic curve degenerates whenever

∆ ≡ 4f3 + 27g2 ∈ O(L12) (4.4)

vanishes. In section 4.3 we will see that the locus where ∆ = 0 and the �ber degenerates plays a
crucial role in the analysis of F-theory models and their massless spectrum.
In this fashion, we have found a formulation with manifest SL(2,Z) invariance without loosing any
information. �e advantage of the formulation in terms of elliptic �brations is that it is very geometric
and we can employ the whole machinery of algebraic geometry and topology. In mathematical terms
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4.2. F-theory via M-theory

we have a twelve-dimensional manifold Y12 with a natural projection to physical spacetime π : Y12 →
X10. Besides the �bration comes with a preferred section σ : X10 → Y12 which maps a point of
spacetime to the neutral element of the elliptic curve in the �ber viewed as an abelian group. We can
identify physical spacetime with the image of σ.

All in all F-theory is a 12-dimensional theory where two dimensions are very di�erent to the other
ten in the sense that the elliptic curve exhibits a complex structure in contrast to the spacetime di-
mensions.

4.2. F-theory via M-theory

So far we have looked at F-theory from the type IIB point of view. �e essential idea was to introduce
the elliptic �bration as a bookkeeping device to reinterpret the complex scalar �eld τ called axio-
dilaton with its SL(2,Z) invariance as complex structure parameter of elliptic curves. In the next
section we would like to widen our understanding by adding a physical interpretation of the elliptic
�ber. �e M-theory star indicates that type IIB theory is connected to M-theory via type IIA theory.
�e following section is based on [Den08].

4.2.1. Constant Axio-Dilaton

Let us consider eleven-dimensional supergravity on a torus T 2 = S1
A × S1

B and let the non-compact
spacetime directions be �at: R1,8. �e radii of the two S1s in the torus are denoted by RA and RB .
Taking S1

A to be the M-theory circle the theory reduces to type IIA on S1
B × R1,8 in the low-energy

limit. �e next step is to apply T-duality which gives us type IIB theory on S1
B̃

with RB̃ = α′/RB . If
one takes the limit RB → 0, then the compact dimension of the type IIB theory will uncompactify:
RB̃ →∞. In this way eleven-dimensional supergravity on a vanishing torus is dual to type IIB theory
on R1,9.

In the eleven-dimensional theory the limit RB → 0 can be realized by keeping the complex structure
modulus of the torus which is essentially given by τ ∼ RA/RB �xed and taking the area of the torus
area(T 2) ∼ RA ·RB to zero.

By explicitly tracing the complex structure modulus of the torus through the KK reduction and the
T-duality application one can show that it turns out to be the axio-dilaton in the type IIB picture.
Additionally the volume of the torus can be interpreted as the KK mass scale in the type IIB compact-
i�cation on R1,8 × S1

B̃
. By shrinking the size of the torus the KK modes in type IIB become lighter

until they are massless in the zero-volume limit and rearrange in ten-dimensional massless multiplets.
Details on this can be found in [Den08].

M-theory on T 2|area(T 2)→0, τ �xed ←→ Type IIB theory with constant axio-dilaton τ .
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4. F-theory

4.2.2. Varying Axio-Dilaton

One of the essential ingredients of type IIB string theory are D-branes. As we know from the super-
gravity solution of D-branes (see (4.2)) the axio-dilaton won’t be constant as soon as D-branes are
present. �us the M-theory approach to F-theory has to be generalized to non-constant axio-dilaton
and therefore non-constant complex structure modulus of the �ber.
For de�niteness let us focus on compacti�cations to six dimensions from now on. �e generalization
to other even dimensions is immediate.
Consider M-theory on R1,5 × Y3 where Y3 is a Calabi-Yau threefold which is elliptically �bered over
the base B2 which shall be a complex compact manifold of complex dimension two. In our cases it
will always be B2 = CP2. By the same arguments as before we take the area(T 2)→ 0 limit but now
�ber-wise. �en, one of the two real �bral dimensions will grow and recombine to one new spacetime
dimension. �e resulting theory is dual to type IIB on R1,5 ×B2. Since we started with a non-trivial
elliptic �bration the complex structure modulus τ and therewith the axio-dilaton is varying on B2

which is what we wanted.
Having this construction in mind we can “de�ne” F-theory. �e quotation marks shall emphasise that
no fundamental dynamical de�nition is known to date. We can explore F-theory only through its
dualities to other theories. In the type IIB formulation the elliptic �ber is only a bookkeeping device
whereas in the M-theory formulation of F-theory one dimension of the elliptic �ber becomes part of
the eleven-dimensional physical spacetime.
�rough this formulation we have found a powerful tool to analyse F-theory compacti�cations: �e
low-energy e�ective limit of M-theory on Y3 without taking the F-theory limit area(T 2) → 0 is
supergravity in R1,4. �is theory is connected to F-theory on R1,5 by compacti�cation on a S1. �is
correspondence will be heavily exploited in section 4.4.

4.3. Fiber Degenerations

Mathematically an elliptic �bration is de�ned as a �bration with almost all �bers being smooth curves
of genus one. All �bers which are not elliptic curves are called singular �bers. �ey are unions of ra-
tional curves which may have singularities or multiple multiplicities. �e singular �bers of an elliptic
surface were classi�ed by Kodaira [Kod63] [Kod68]. �e classi�cation is tightly connected to the clas-
si�cation of semi-simple Lie algebras over algebraically closed �elds. �e Dynkin diagrams appearing
there can be found in the geometry of singular �bers in the intersection pa�ern of the rational curves
a�er resolution. Each curve corresponds to a node in a Dynkin diagram and every intersection corre-
sponds to an edge. In this way a singular �ber corresponds to a Lie algebra. �is is how non-abelian
gauge theory is realised in F-theory. In the following the basic ideas of this identi�cation is outlined.
As soon as one allows for a varying axio-dilaton, the elliptic �bration will develop singularities. �ese
singularities come in two di�erent forms. First there exist singularities of the elliptic �bration which
are characterised by a singular �ber but leave the total space smooth. An example for this are type
I1 singularities which are characterised by vanishing orders (f, g,∆) = (0, 0, 1). �ey correspond
to the presence of a single 7-brane which can be seen as follows. Consider the SL(2,Z)-invariant
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4.3. Fiber Degenerations

(a) Type II (b) Type III (c) Type IV (d) Type I∗0

Figure 4.1.: Some �ber singularity types.

j-function. For our purposes we do not need the proper de�nition. If su�ces to state that it can be
expanded like:

j(τ) = exp(−πiτ) + 744 + exp(2πiτ) + . . . .

For elliptic curves it can be shown that:

j(τ) =
13824 f3

∆
.

Let z1 = 0 locally describe the position of the brane. �en, j is proportional to 1/z1 which follows
from the above equations. �e above equations imply that τ depends logarithmically on z1 which is
the characteristic sign of a 7-brane (see discussion around (4.2)).
�e other class of singular elliptic �bers consists of singularities where not only the �ber but also the
total space becomes singular. �is happens if ∆ vanishes to higher order. For Y2 = K2 Kodaira has
classi�ed all possible singular �bers. Here one �nds gauge algebras from the ADE-family. However
if one considers elliptic �brations of higher dimensions, one has to take monodromies into account,
which act on the singular locus and therefore on the Dynkin diagram. �rough this mechanism it is
possible to construct singularities with associated Lie algebras of the B- and C-family and the excep-
tional ones. �e monodromies were systematically studied by Tate [Tat75] and are nicely presented
in table 4 of [GM12] (see table 4.1).
�e �ber singularities which are most relevant in the following are type II, type III, type IV and type I∗0.
�ey are displayed in �gure 4.1.
Table 4.1 has to be read in the following way. f and g are the sections appearing in the Weierstrass
form and ∆ is the discriminant of the elliptic curves. �ese quantities are de�ned around (4.3) and
(4.4). In the table ordΣ1(f) refers to the vanishing order of f along Σ1 where Σ1 is the locus in the
base over which the singularity is �bered. Likewise ordΣ1(g) and ordΣ1(∆) are de�ned. �e quantity
z1 is the coordinate which vanishes along Σ1 (see [GM00] for details).
�e monodromy, whenever it is relevant, is described by a polynomial of degree two or three in an
auxiliary variable ψ which is a meromorphic section of a suitable line bundle over Σ1. Most polyno-
mials in the table are of order two. In this case one has to consider the discriminant of the quadratic
equation.1 If the discriminant is a square, i.e. of the form (. . .)2, the monodromy cover is reducible
and one gets the larger gauge group. If the square root does not exist, the cover is irreducible and one

1�e discriminant of the quadratic equation x2 + ax + b = 0 is de�ned as a2 − 4c. It is the expression which appears
under the square root in the formula for the solutions of the equation.

35



4. F-theory

(
ordΣ1

(f), ordΣ1
(g)

)
ordΣ1

(∆) Equ. of monodromy cover Gauge group

I0 (≥ 0,≥ 0) 0 — —
I1 (0, 0) 1 — —
I2 (0, 0) 2 — su(2)

Im, m ≥ 3 (0, 0) m ψ2 + (9g/2f)z1=0 sp(
[
m
2

]
) or su(m)

II (≥ 1, 1) 2 — —
III (1,≥ 2) 3 — su(2)
IV (≥ 2, 2) 4 ψ2 − (g/z2

1)|z1=0 sp(1) or su(3)
I∗0 (≥ 2,≥ 3) 6 ψ3 + (f/z2

1)|z1=0 · ψ + (g/z3
1)|z1=0 g2 or so(7) or so(8)

I∗2n−5, n ≥ 3 (2, 3) 2n+ 1 ψ2 + 1
4

(∆/z2n+1
1 )(2z1f/9g)3|z1=0 so(4n− 3) or so(4n− 2)

I∗2n−4, n ≥ 3 (2, 3) 2n+ 2 ψ2 + (∆/z2n+2
1 )(2z1f/9g)2|z1=0 so(4n− 1) or so(4n)

IV∗ (≥ 3, 4) 8 ψ2 − (g/z4
1)|z1 = 0 f4 or e6

III∗ (3,≥ 5) 9 — e7
II∗ (≥ 4, 5) 10 — e8

non-min. (≥ 4,≥ 6) ≥ 12 — —

Table 4.1.: Kodaira-Tate classi�cation of singular �bers, monodromy covers and gauge algebras
[GM12].

gets the smaller gauge group. �is generalises easily to order three in the case of I∗0 singularities.
In the notation we do not distinguish between a Lie algebra and its associated gauge group since the
Lie algebra determines uniquely the corresponding connected Lie group.

4.3.1. Enhanced Gauge Symmetry

Since we would like to consider six-dimensional models we need a complex three-dimensional elliptic
�bration Y3 (which has a real four-dimensional baseB2). �e next aim is to understand the connection
between singular loci in the elliptic �bration and the gauge theory associated to it. To this end we
follow the lines of [Wei10].
Let Σ1 be the divisor, i.e. codimension-one locus, in the base B2 over which the singularity occurs.
In most cases there exists another three-dimensional Calabi-Yau manifold Ỹ3 which is elliptically
�bered over B2 but with the singular �bers over Σ1 replaced by a tree of P1s. Let us call them P1

i

where i = 1, . . . , rk(G). �e procedure to deform Y3 into Ỹ3 is called blow-up along Σ1. In doing so,
the number of Kähler moduli h1,1(Y3) increases by the number of inserted P1s. Additionally one can
express the number of Kähler moduli of Y3 by h1,1(B2) + 1 because the general elliptic �ber has one
Kähler modulus. Applying the Shioda-Tate-Wazir theorem,

h1,1(Ỹ3) = rk(G) + h1,1(B2) + 1. (4.5)

By construction the P1s are �bered over the divisor in the base Σ1. So we can de�ne the respective
divisor in the total space:

Di : P1
i → Σ1.

In other words the Di are P1-�brations over Σ1. Additionally one can de�ne:

D0 = Σ1 −
∑
i

aiDi,
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4.3. Fiber Degenerations

Figure 4.2.: �e possibilities how the M2-brane can wrap chains of P1s in the a�ne I4 Dynkin dia-
gram. �e crossed out node represents the P1 which is intersected by the zero section and
therefore cannot be wrapped. Additionally the M2-brane can wrap the P1s individually
and all of them at once as well.

where ai are the Dynkin labels of the associated Lie algebraG for the respective P1 which will become
clear later. D0 and the Di de�ne the a�ne Dynkin diagram of G in the sense advertised above:∫

Ỹ3

[Di] ∧ [Dj ] ∧ ω = −cij
∫

Σ1

ω ∀ω ∈ H2(B2), i, j = 1, . . . , rk(G),

where cij is the Cartan matrix of G and [Di] ∈ H2(Ỹ3) are the Poincaré-dual 2-forms of the divisors
Di in Ỹ3.
With the help of F/M-duality one can show that actually a gauge theory with gauge bosons live on
the 7-brane. In this duality the M-theory three-form C3 reduced along the general (non-singular)
�ber gives rise to the type IIB two-forms B2 and C2. By resolving the singular �bers we introduce
new 2-cycles, namely the P1

i s, along which C3 can be reduced as well. Integrating the three-form
over a P1

i gives a one-form gauge potential Ai =
∫
P1
i
C3. In total rk(G) gauge potentials are obtained

in this fashion. �ese are the Z-bosons which are a part of the adjoint representation of the gauge
algebra. �e rest, i.e. the W±-bosons, come from the M2-brane of M-theory. It can wrap both single
P1
i s and chains of them: P1

i ∪ P1
i+1 ∪ . . . ∪ P1

j with i ≤ j. �is can be done in two orientations. �us
the number has to be multiplied by two. Obviously M2-wrappings on non-vanishing two-cycles give
massive particles. However, these particles become massless taking the F-theory limit during which
the resolution cycles shrink to zero size. In this way we obtain the W±-bosons which complete the
adjoint representation of the gauge algebra.
Let us illustrate the above by an example. Consider an elliptic �bration with a codimension-one locus
over which the �ber has an A3 singularity which gives rise to an SU(4) gauge theory. �e adjoint
representation of SU(4) has 15 dimensions, three of which come from reducing C3 along the three
availableP1s. Additionally the M2-brane can wrap eachP1 individually (3 states), it can wrap chains of
two P1s (2 states) and chains of three P1s (1 state). �is is schematically shown in �gure 4.2. �ese six
states correspond to the W+-bosons. Wrapping with opposite orientation gives the six W−-bosons.
In total, we �nd 3 + 6 + 6 = 15 states which form the adjoint representation of SU(4).
As a concluding remark note that the above mechanism produces non-abelian gauge groups. Abelian
factors are not covered here; they are realised di�erently. To �nd the number of abelian factors one
has to take global aspects of the �bration into account. Essentially the number of U(1)s is given
by the dimension of the so-called Mordell-Weil group. Details on this can be found in [MV96a] and
[BCV14]. In any way the total rank of the gauge group is given by h1,1(Yn)− h1,1(Bn−1)− 1.

37



4. F-theory

4.3.2. Charged Ma�er

A�er having dealt with the gauge theory the naturally arising question is: Which mechanism in F-
theory is responsible for ma�er �elds that are charged under the gauge group? From the duality to
type IIB string theory we expect to �nd this ma�er at the transversal intersection of two branes.

When two 7-branes intersect in F-theory the �bration develops a more severe singularity. �is is obvi-
ous since the singularity type depends crucially on the vanishing order of ∆ as can be seen in table 4.1.
When two 7-branes intersect the vanishing order of ∆ inevitably increases. Formally we can asso-
ciate a Lie algebra to this codimension-two locus which is bigger than the Lie algebra corresponding
to the codimension-one locus. Note that this enhanced Lie algebra does not generate a gauge theory
for us because the P1s are already partly wrapped in order to �ll the adjoint representation of the Lie
algebra living on the brane. Nonetheless there are new two-cycles at the codimension-loci which can
be wrapped by M2-branes. �ese will organise in representations of the gauge groups living on the
two intersecting branes.

Let G1, G2 be the two gauge groups associated to the singularities above the two divisors which
intersect and let G12 be the enhanced gauge group at the intersection locus. In the simplest case
one can determine the ma�er representation by pure group theory: �e adjoint representation of
G12 decomposes into the sum of the adjoint representation of G1, the adjoint of G2 and additional
representations. �is last contribution is the ma�er charged under both gauge groups.

G12 → G1 ×G2

adj.→ (adj., 1)⊕ (1, adj.)⊕Ma�er reps.

As an example consider an I5 and an I1 singularity along two divisors in the base. �e two divisors
shall intersect at one point. �e I1 locus does not carry a gauge group whereas an SU(5) gauge theory
lives on the other brane. At the intersection locus the singularity enhances to I6, i.e. formally SU(6)

(see table 4.1). A quick look into [Sla81] con�rms:

SU(6)→ SU(5)

35→ 24⊕ 5⊕ 5̄⊕ 1.

�us we observe that a fundamental representation lives at this type of enhancement.

For some enhancements it is clear which ma�er representations live at codimension-two. However,
for some cases it is not obvious. As a �rst example consider a II→ III or a II→ IV enhancement. Since
there is no gauge group associated to type II we cannot apply the above ideas. �e main objective of
this thesis is to �nd out what happens here. We will go into detail in section 6. In the literature we
�nd examples in [GM00] and [GM12].

Please note that Kodaira’s classi�cation of singular �bers does only hold in codimension-one. �us the
�bers may look di�erent at codimension-two: It can happen that the nodes of the Dynkin diagram are
partially deleted. We will observe this phenomenon explicitly e.g. in the discussion around �gure A.1.
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4.4. Mapping Six-dimensional Supergravity to F-theory

Finally we would like to connect the two theories that were presented so far: F-theory on an elliptically
�bered Calabi-Yau threefold Y3 with base B2 and six-dimensional N = (1, 0) supergravity. �e
massless spectrum of a F-theory model must �t into multiplets of its low-energy e�ective theory, in
this case six-dimensional supergravity. In other words one has to match geometric properties of the
F-theory compacti�cation space with the variables of six-dimensional supergravity, most importantly
the number of hyper, vector and tensormultiplets.
�e idea behind the identi�cation is to consider M-theory onY3 which yields e�ectively �ve-dimensional
supergravity. Additionally one studies the compacti�cation of six-dimensional supergravity to �ve
dimensions and matches the properties of these to theories explicitly. Taking the F-theory limit means
going from M-theory on Y3 to F-theory on Y3 and in the low-energy sector going from �ve to six di-
mensions. In this way we can exploit our knowledge about M-theory and compacti�cations to extract
the information about F-theory. As always the details are very involved. For our purposes it su�ces
to state the results of the analysis which is explicitly carried out in [BG12].
�e total number of tensor �elds is given by:

nT = h1,1(B2)− 1.

In this work we focus on B2 = P2. For P2 the number of Kähler moduli equals one implying no
tensormultiplets.
�e above identi�cation is very plausible from the type IIB point of view: �e RR 4-form C4 can be
reduced along two-cycles (which are counted by h1,1(B2)) leaving e�ectively two-tensors.
�e hypermultiplets come from di�erent sources. First, there are charged hypermultiplets located at
codimension-two as we have already described. Second, the complex structure moduli contribute to
the hypermultiplets as well:

nH0 = CxDef(Y3) + 1.

One can compute the number of complex structure moduli CxDef(Y3) with the help of the Hodge
number h2,1(Ỹ3) as long as the singularities are resolvable. If they are more severe one has to add
corrections to the naı̈ve h2,1 (see the discussion around (5.2) below). �e details are described in
[AGW16]. Generally, there are also g(Σi) hypermultiplets for each codimension-one locus with en-
hanced gauge symmetry with g being the genus of the divisor. However in our cases the genus of the
divisors will always be zero.
Finally, we need to identify the vectors a and bi which come into play in (3.1) and play a crucial role
in the anomaly conditions (3.3) to (3.8). One can show (see again [BG12]) that one has to identify:

a←→ KB, (4.6)

bi ←→ divisor class in the base of the respective gauge brane (4.7)

�e scalar product on the vector space is identi�ed with the intersection product in B2 which is
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4. F-theory

well-de�ned since in two dimensions divisors and curves have the same dimension.
Generally speaking the canonical class of Pn is given by−(n+1)H whereH is the hyperplane class.
�us, a ·awhich appears in (3.5) can be calculated in our F-theory on P2 context by intersecting−3H

with itself. Since H · H = 1 we see that a · a = 9. �is is consistent with our previous result that
there are no tensormultiplets in the theory.
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In the last section we outlined that codimension-two loci give rise to ma�er representations. However
it is not known whether uncharged ma�er occurs if there is a type II singularity at codimension one.
In the sequel a particular type of F-theory compacti�cations to six dimensions is analysed in order to
learn about these ma�er representations via the previously developed machinery.
�e big-picture idea is the following: By computing the number of complex structure moduli of an
elliptically �bered threefold Y3 with isolated terminal singularities we know for sure how many neu-
tral hypermultiplets are in the theory. Since F-theory models are anomaly-free the spectrum has to
satisfy the anomaly constraints in six dimensions. With this tool at hand it is possible to check the
correctness of the number of complex structure moduli. Besides the total number of complex structure
moduli is divided into two parts: those which leave the terminal singularities untouched and those
which deform them. �e �rst part will correspond to unlocalised hypermultiplets and the second one
to localised hypers which is the essential statement of this thesis.
Our �rst task will be to compute the topological Euler characteristic of an elliptic �bration over a
two-dimensional base because it can be used to compute the number of complex deformations which
controls the total number of uncharged hypermultiplets. �is is done in full generality without re-
stricting to the case B2 = CP2.

5.1. Complex Structure Deformations and Ma�er at Codimension
Two

�e main objective of this thesis is to determine whether there exists uncharged ma�er at codimension
two. Generally the origin of uncharged ma�er are the complex structure deformations of the total
space Y3. In this section let us omit the index of Y3 and keep in mind that part of the results hold only
for Calabi-Yau threefolds. If the Calabi-Yau manifold Y is crepant resolvable it is possible to compute
CxDef(Y ) via the Hodge number h2,1(Ỹ ). Concretely, this can be done by applying the identity:

CxDef(Y ) = CxDef(Ỹ ) = h2,1(Ỹ ) = h1,1(Ỹ )− 1
2χtop(Ỹ ). (5.1)

However one has to be aware of the fact that the above formula is only valid for crepant resolvable
Y . As soon as Y possesses terminal singularities Hodge decomposition breaks down and the formula
is not valid any longer.
So let us compute the number of complex structure deformations of such a non-resolvable space and
discriminate them into the ones which leave the singularity untouched and the ones which deform
the singularity. It is a mathematical fact [AGW16] that if Y is a Q-factorial Calabi-Yau threefold with
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isolated terminal singularities then it admits a smoothing Yt and the number of complex structure
moduli is given by:

CxDef(Y ) = 1
2 b3(Y ) + 1

2

∑
P

mP ,

where b3(Y ) is the third Be�i number, P are the isolated singular points andmP is the Milnor number
of the singularity (see section 5.5). Besides one can show that the number complex structure defor-
mations of a singular Calabi-Yau and a smoothing are the same: CxDef(Y ) = CxDef(Yt). It follows
that b3(Yt) = b3(Y ) +

∑
P mP since the third Be�i number equals CxDef in the smooth case. �us,

1
2 b3(Yt) = 1

2 b3(Y ) + 1
2

∑
P

mP = 1
2

(
b3(Y )−

∑
P

mP

)
+
∑
P

mP .

In other words,

1
2 b3(Yt)−

∑
P

mP = 1
2

(
b3(Y )−

∑
P

mP

)
= CxDef(Y )−

∑
P

mP .

It turns out that
∑

P mP on the le�-hand side actually counts the number of so-called versal deforma-

tions, i.e. deformations which destroy the form of the singularity.1 Put di�erently the total number of
complex structure moduli can be split into two parts: the moduli which preserve the singularity and
those which deform the singularity. �ese considerations lead to the following conjecture:

�e total number of uncharged hypermultiplets (both localised and non-localised) is given byCxDef(Y )+

1. A part of these uncharged hypermultiplets is localised (
∑

P mP ) and the rest is non-localised (1 +

CxDef(Y )−
∑

P mP ).

Later we will analyse some models in order to observe at which types of singularities uncharged
localised ma�er lives. To this end we need to be able to explicitly compute CxDef(Y ). �e crucial
formula in this context is [AGW16]:

CxDef(Y3) = KaDef(Y3)− 1
2 χtop(Ỹ3) + 1

2

∑
P

mP . (5.2)

�e number of Kähler deformations KaDef is still given by h1,1(Ỹ3) and mP is again the Milnor
number associated to the point P . �e sum goes over all singular codimension-two loci. If a point
is smooth the Milnor number vanishes and (5.2) reduces to (5.1). �is distribution is visualised in
�gure 5.1.

1�is assertion is based on the fact that in our case the Milnor number and the Tyurina number coincide. Mathematical
details can be found in [RT08].
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Uncharged hypermultiplets:
1 + KaDef − 1

2χtop + 1
2

∑
mP

Non-localised hypers:
1 + KaDef − 1

2χtop − 1
2

∑
mP

Localised hypers:∑
mP

+

Figure 5.1.: Origin of uncharged hypermultiplets in six-dimensional F-theory compacti�cations.

5.2. How to compute χtop

To compute the Euler characteristic of an elliptically �bered Calabi-Yau manifold we follow the ap-
proach presented in [GM00]. �e elliptic �bration is given in Weierstrass form:

PW = −y2 + x3 + fxz4 + gz6 = 0,

where f, g are sections of O(−4KB),O(−6KB), respectively (such that the total space is Calabi-
Yau). We assume that the gauge group does not contain any abelian factors. Besides we assume for
simplicity that it has only one semi-simple factor. Later we will generalise the computation for χtop

to theories with two identical simple factors (see section 7).

5.2.1. Notation

First we have to introduce a bunch of notation. For a be�er overview we include �gure 5.2 on which
most of the notation is outlined.

• �e discriminant shall be of the form ∆ ≡ 4f3 +27g2 !
= zm1 ·σ0 where z1 is the local coordinate

on the base B2 which de�nes the divisor Σ1 on which the 7-brane is wrapped. σ0 does not
vanish identically along z1 = 0, i.e. m is chosen to be maximal. σ0 locally de�nes the residual
discriminant Σ0. Over the generic point of Σ0 a type I1 singularity is �bered. �us, there is no
gauge group located here.

• Likewise the sections f and g shall vanish to degree µf and µg along Σ1. Locally:

f = z
µf
1 f0 and g = z

µg
1 g0, (5.3)

such that f0 and g0 do not vanish along z1.

• Additionally let µP (f, g) be the intersection multiplicity of f0 and g0 at a point P .

• �e generic �bers over Σ0,Σ1 are called XΣ0 , XΣ1 , respectively.

• Generically Σ0 and Σ1 intersect. �ere is a �nite number of groups of intersection points which
are locally the same. So let the intersection points be denoted by P ij (i labels the groups of
locally equivalent points and j enumerates the points in the group). Additionally the residual
discriminant will have cuspidal self-intersection points: Qj . We will suppress the upper index
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Σ1

Σ0
P1

P2

Q

XQ

XP1

XP2

Figure 5.2.: Most of our notation for an elliptically �bered Calabi-Yau threefold with one 7-brane.

of P and Q whenever we want to address the whole group of enhancement points at once.
Besides we denote by P the whole set of intersection points in Σ0 ∩ Σ1.

• �e �bers over Pi and Q are called XPi and XQ, respectively.

• Bi and C are the number of points P i and Q, respectively.

• Let g(Σ1) be the genus of the curve2 Σ1.

• (f, g,∆)|Σ denotes the vanishing orders of f, g,∆ along the general point of a locus Σ. When-
ever it is clear which locus we are addressing we will simply write (f, g,∆).

5.2.2. Contributions to χtop

�e topological Euler characteristic has two important properties. First, one can split the space into
smaller ones, compute their respective Euler characteristic and then sum all contributions up. �is
is possible due to the Mayer–Vietoris sequence. Second, for a product space the topological Euler
characteristic can be expressed as a product of the Euler characteristics of the factors. In our case the
elliptic �bration is locally a product space and therefore we can compute the Euler characteristic of
the base and multiply it with the Euler characteristic of the �ber. But since the �bration is generally
non-trivial this is only possible locally.
We can split the total space into �ve components:

1. �e �bers over the intersections points Pi:
⋃
i π
−1(Pi). �eir contribution is∑

i

χtop(XPi) ·Bi. (5.4)

2. �e generic �ber over Σ1: π−1(Σ1\P ). �e Euler characteristic of Σ1 without the enhancement
points is given by χtop(Σ1) = 2 − 2g(Σ1) minus the number of points P :

∑
iBi. It must be

2Note that we are considering Calabi-Yau threefolds with two-dimensional bases. �erefore divisors on the base are curves.
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multiplied by the Euler characteristic of the �ber:

χtop(XΣ1) ·
(

2− 2 g(Σ1)−
∑
i

Bi

)
. (5.5)

3. Analogously there is a contribution from the general �ber over Σ0:

χtop
(
π−1(Σ0 \Q \ P )

)
. (5.6)

4. Finally the �bers over Q contribute:

χtop(XQ) · C. (5.7)

5. �e general �ber over points where the discriminant does not vanish does not contribute to the
Euler characteristic since the χtop of a torus is zero.

5.2.3. The Calculation

Let us look at the di�erent contributions in turn. �ere is nothing to say about (5.4). It is already in
its �nal form. In (5.5) we can replace χtop(XΣ1) = m. �is can be shown by inspecting all possible
�ber types, i.e. all Dynkin diagrams. In (5.7) we can set χtop(XQ) = 2 because at the points Q the
vanishing orders are (µf , µg,m)|Q = (1, 1, 2) which corresponds to a cuspidal singularity (type II in
Kodaira’s classi�cation). A cuspidal curve has χtop = 2 (more on the calculation of χtop for singular
elliptic �bers in section 5.4 below). What remains is to compute the number of cusps of Σ0 and to
bring the third contribution into a nicer form.

The number of cusps C. Cusps appear as soon as both f and g vanish along Σ0 \ P . Since f and
g are of the form (5.3) only f0 and g0 can vanish along Σ0 away from Σ1. �e number of intersection
points naı̈vely is (−4KB−µfΣ1)·(−6KB−µgΣ1). However we have to correct it by the intersection
multiplicity µPi(f, g) of f0 and g0 at the points Pi. All in all the number of cusps is given by:

C = 24K2
B +

(
4µg + 6µf

)
KB · Σ1 + µfµgΣ

2
1 −

∑
i

µPi(f, g)Bi.

The third contribution. First note that along Σ0 the vanishing order structure is (f, g,∆)|Σ0 =

(0, 0, 1). �erefore the elliptic curve develops a type I1 singularity. Its Euler characteristic isχtop(XΣ0) =

1.
If Σ0 was a smooth curve, its topological Euler characteristic would be given by: −(KB + Σ0) · Σ0.
However it can happen that Σ0 is not smooth at the intersection points P and it is de�nitely not
smooth at the self-intersection points Q. Moreover one has to exclude all these points because they
are already taken into account in (5.4) and (5.7). �erefore we have to include correction terms for
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each point P1, P2 and Q:

χtop
(
π−1(Σ0 \Q \ P1 \ P2)

)
=
(
− (KB + Σ0) · Σ0 +

∑
i

εiBi + εcC
)
· χtop(XΣ0)︸ ︷︷ ︸

=1

.

Obviously εi has to be de�ned such that it is−1 if the considered point is a smooth point on the curve.

�ere are two tasks le�. First, we calculate −(KB + Σ0) · Σ0. �en, we will take a close look at the
de�nition and computation of the εis.

�e Calabi-Yau condition for an elliptic �bration ∆ ∈ O(−12KB) implies: Σ0 = −12KB −mΣ1. It
immediately follows that Σ0 ·Σ1 = −12KB ·Σ1 −mΣ2

1. Applying these two relations several times
gives:

−(KB + Σ0) · Σ0 = −132K2
B − 23mKB · Σ1 −m2 Σ2

1.

Finally, let us properly de�ne the εis. As having observed ε of a smooth point must take the value−1.
Let us consider a curve D with singular point P ∈ D. φ1 : B1 → B shall be the blow-up of the point
P with exceptional divisorE. We de�ne the quantity α1 viaD1 = φ∗1(D)−α1(P )E whereD1 is the
strict transform of the curve.3 �en the Euler characteristic of the blown-up curve is [GM00]:

χtop(D1) = −(KB1 +D1) ·D1 = −(KB +D) ·D − α1(P ) · (α1(P )− 1).

We perform successive blow-ups until the point P is smooth. Since we do not want to include the
singular point itself in our calculation of χtop we have to subtract the number of preimages of P
under the total blow-up φ. We combine the total correction of χtop due to the singular point P into
the de�nition of ε:

ε :=
∑
i

αi(P ) ·
(
αi(P )− 1

)
−#φ−1(P ),

where i runs over the successive blow-ups one has to perform until the singularity is smoothed out
completely.4 In section 5.3 we will explicitly compute εi for all singularity types which appear in the
context of this thesis.

3To illustrate the de�nition of α1 let us look at a simple example: Let the curve D be given by the equation x3 + y3 = 0.
It is singular at (0, 0). �e blow-up x→ xy, y → y leads to y3 · (x3 + 1) = 0. �en y is the exceptional divisor of the
blow-up and appears with multiplicity α1 = 3.

4In our above example #φ−1(P ) = 3 and therefore ε = 3 · 2− 3 = 3. Let us look at another example: x3 + y5 = 0. �e
�rst blow-up is x → xy: y3 · (x3 + y2) = 0. So α1 = 3. �en perform y → xy: x2 · (x + y2) = 0. Since x + y2 has
only one solution #φ−1(P ) = 1 and ε = 3 · 2 + 2 · 1− 1 = 7.
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5.2.4. The Result

Pu�ing everything together we arrive at our �nal expression of the topological Euler characteristic of
an elliptically �bered Calabi-Yau threefold Y3 overB2 with singular locus Σ0∪Σ1 as speci�ed above:

χtop(π : Y3 → B2) = χtop
(⋃

i

π−1(Pi)
)

+ χtop
(
π−1(Σ1 \ P )

)
+ χtop

(
π−1(Σ0 \Q \ P1 \ P2)

)
+ χtop

(
π−1(Q)

)
=
(∑

i

Bi · χtop(XPi)
)

+m
(

2− 2g −
∑
i

Bi

)
− 132K2

B − 23mKB · Σ1 −m2 Σ2
1 + 3C +

∑
i

εiBi,

(5.8)

with

C = 24K2
B +

(
4µg + 6µf

)
KB · Σ1 + µfµgΣ

2
1 −

∑
i

µPi(f, g)Bi. (5.9)

5.3. How to compute ε

In the last section we de�ned the quantity ε which is an integer associated to a point on a plane
complex curve. In the following we will encounter three di�erent classes of points for which we have
to calculate ε: smooth points, singularities of the form x2 + yn = 0 for n ≥ 2 and singularities of the
form x3 + yn = 0 for n ≥ 3. We drop the index which counts the number of successive blow-ups
because it should be clear from the context.

Claim: For smooth points: ε = −1.

As we already pointed out there is no need to blow up smooth points (α = 0 and #φ−1 = 1).
�us, ε = α(α− 1)−#φ−1 = −1. #

Claim: For singularities of the form x2 + yn = 0 for n ≥ 2 : ε = n− 2.

First consider x2 + y2 = 0. A�er the blow-up x → xy it takes the form y2(x2 + 1) = 0, i.e.
α = 2 and #φ−1 = 2. �us, ε = 0 in this case. X
Next consider x2 + y3 = 0. �e blow-up x → xy leads to y2(x2 + y) = 0 which means α = 2

and #φ−1 = 1. �us, ε = 1.X

Finally perform the induction step. �e curve x2 + yn+2 = 0 is blown up to y2(x2 + yn) = 0

where we set x→ xy. �us, α = 2 and εx2+yn+2 = 2 + εx2+yn which proves the assertion. #

Claim: For singularities of the form x3 + yn = 0 for n ≥ 3 : ε = 2n− 3.

We can show this claim by induction as well. However this time we need three initial steps. First,
x3 + y3 = 0 is blown up to y3(x3 + 1) = 0 (x→ xy), α = 3, #φ−1 = 3 and ε = 3 · 2− 3 = 3. X
Second, x3 + y4 = 0 is blown up to y3(x3 + y) = 0 (x → xy), α = 3, #φ−1 = 1 and
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ε = 3 · 2− 1 = 5. X
�ird, x3 + y5 = 0 is blown up to y3(x3 + y2) = 0 (x → xy) and α = 3. Since we are free to
swap x↔ y we already showed that εx2+y3 = 1. All in all, ε = 3 · 2 + εx2+y3 = 7.
�e induction step is done in steps n→ n+3. Consider the curve x3 +yn+3 = 0. A�er the blow-
up x→ xy, the exceptional divisor y3 factors: y3(x3+yn) = 0. �us, εx3+yn+3 = 3·2+εx3+yn =

6 + 2n− 3 = 2(n+ 3)− 3 where we inserted the induction hypothesis εx3+yn = 2n− 3. X #

Let us summarize our results: �e characteristic number ε for a plane curve singularity can be calcu-
lated with the help of the following formulae:

εsmooth = −1, εx2+yn, n≥ 2 = n− 2, εx3+yn, n≥ 3 = 2n− 3. (5.10)

5.4. How to compute χtop(XPi
)

�e last non-trivial element in formula (5.8) is the topological Euler characteristic of the �ber over the
enhancement points Pi. Resolving the �ber leads to several P1s intersecting each other. �e general
prescription to compute χtop(XP ) is:

1. Take a look at every component, i.e. every P1 of the �ber. A P1 has χtop = 2. Subtract one for
every intersection point on the P1.

2. Add the contributions from all P1s up.

3. Add one for every intersection point.

Let us make the prescription more concrete by considering some examples. �e numbers in paren-
thesis denote the contributions to χtop. For a visual impression of the �ber types see �gure 4.1.

• �e type II �ber. It has one component and one singular point (2-1+1). �us, χtop(type II) = 2.

• �e type III �ber. It has two components each of which has one singular point (1 + 1). In total
there is one singular point (1). �us, χtop(type III) = 1 + 1 + 1 = 3.

• �e type IV �ber. It has three components all of which have a singular point (1 + 1 + 1). �ese
three singular points are coincident (1). So, χtop(type IV) = 3 + 1 = 4.

• �e type I∗0 �ber. It has four components with one singular point (1+1+1+1), one component
with four singular points (2−4) and all in all four singular points (4). �erefore, χtop(type I∗0) =

6.

Crucial Remark. It is tempting to determine the �ber type with the help of table 4.1 by plugging
the naı̈ve value for the �ber as computed above into formula (5.8). However, this is not possible.
�e reason is that the Tate-Kodaira classi�cation only holds for singular �bers in codimension-one.
In contrast we look at singularities in codimension-two. It turns out that it is possible that parts of
the resolved elliptic �ber are deleted. Whenever P1s are deleted the value of χtop will change. �is
phenomenon will explicitly appear later in this thesis.
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5.5. How to computemP

Finally we would like to formally introduce the Milnor number which is associated to a singularity.
Let O be the ring of function germs (Cn, 0) → (C, 0). Let f ∈ O. �en the Jacobian ideal Jf of f is
de�ned as:

Jf =

〈
∂f

∂zi
, 1 ≤ i ≤ n

〉
.

Jf is an ideal in O viewed as an algebra. �erefore the following local algebra is well-de�ned:

Af = O/Jf .

It can be shown that Af is not only an algebra but also a C-vector space which may or may not
be �nite-dimensional. One can show that it is �nite if and only if the origin is an isolated critical
point, i.e. there is a neighbourhood of the origin such that it is the only critical point of f inside that
neighbourhood (see below for examples). Still we can de�ne the Milnor numbermP of f at the origin

by:

mP = dimCAf .

Examples Let us go through a few examples to develop some intuition for the Milnor number. First
consider C2 with coordinates x, y as embedding space.

• Let f = xy. �en the only critical point on f = 0 is the origin. Particularly the origin is
an isolated critical point and the Milnor number is expected to be �nite. �e Jacobian ideal
is Jf = 〈x, y〉. �erefore Af = 〈1〉 and the Milnor number associated to this singularity is
mP = 1.

• Let f = x2. �en the whole y-axis is critical and the local algebra Af is expected to be a
in�nite-dimensional vector space. Since the Jacobian ideal is Jf = 〈x〉 our algebra is:

Af = O/Jf = C[[x, y]]/〈x〉 = C[[y]].

�e algebra C[[y]] is in�nite-dimensional as a C-vector space and thus the Milnor number is
∞.

In our context we will encounter the following type of singularity. Consider C4 with coordinates
z, x1, x2, x3 as embedding space. Let f = za + x2

1 + x2
2 + x2

3 with a being an integer ≥ 2. �en,

Af = O/〈za−1, x1, x2, x3〉 = 〈1, z, z2, . . . , za−2〉.

Since the number of generators of Af is a− 1 the Milnor number is mP = a− 1.
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Let us turn to the actual models and analyse F-theory compacti�cations on an elliptically �bered
Calabi-Yau threefold Y3 over the base B2 = P2. �e considered models are chosen such that we will
learn what happens at singularities in codimension two. Generally speaking the complex deforma-
tions of the total space Y3 are responsible for the uncharged hypermultiplets in six-dimensional low
energy e�ective theory. �ese complex deformations split into two parts: the unlocalised uncharged
hypermultiplets and the localized uncharged hypers at codimension two. It will be shown that the
number of the localized uncharged hypers is controlled by the so-called Milnor number associated
to the singularity at codimension two. As stated before the anomaly conditions in six dimensions
provide a powerful tool to validate our considerations.

�e outline of this chapter is: First we con�rm the formulae of the preceding chapter by having a look
at smooth or fully resolvable models. �en the famous I1 conifold model is analysed with our tools
and the explicit distribution of uncharged hypermultiplets is stated. Finally we apply our conjecture
to models which cannot be fully resolved �rst with trivial and then with non-trivial gauge group.

To do this we need to specify formula (5.8) to the base P2: �e canonical bundle of P2 is given by
KB = −3H where H is the hyperplane class. Σ1 will always be de�ned by se�ing a coordinate to
zero: z1 = 0. �us it is in the hyperplane class H . In complex projective space we have the following
general relation: H ·H = 1. �us,

K2
B = 9, KB · Σ1 = −3, Σ2

1 = 1.

Additionally, since Σ0 is in −12KB −mΣ1 we can simplify:

Σ0 · Σ1 = (−12KB −mΣ1) · Σ1 = 36−m.

Moreover, if Σ1 is de�ned by z1 = 0 its genus is g(Σ1) = 0. With these preliminary considerations
we are able to simplify equation (5.8) to:

χtop(Ỹ3) = −540 +
∑
i

Bi

(
χtop(XPi) + εi − 3µi(f, g)

)
+m ·

(
71−m−

∑
i

Bi

)
−36µg − 54µf + 3µfµg.

(6.1)
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6.1. Smooth and Resolvable Models

As a sanity check we consider the smooth and some resolvable models. In this case we can useχtop(Ỹ3)

to calculate the number of complex structure moduli,

h2,1(Y3) = h1,1(Ỹ3)− 1
2χtop(Ỹ3), (6.2)

where h1,1(Ỹ 3) = rk(G) + h1,1(CP2) + 1 = rk(G) + 2 as we know from equation (4.5) where G
is the gauge group associated to the singularity over Σ1 and Ỹ3 is the resolved threefold. �en the
number of uncharged hypermultiplets is given by:

nH0 = h2,1(Y3) + 1 = rk(G)− 1
2χtop(Ỹ3) + 3.

All results of this section are outlined in table 6.1.

6.1.1. The General Weierstrass Model

We start out with the general Weierstrass model, i.e. µf = 0 = µg . �en there is no divisor Σ1

(m = 0) and therefore no enhancement points P . All contributions in equation (6.1) vanish except
for the �rst one. �us, χtop(Ỹ3) = −540. �e number of uncharged hypermultiplets is 273 which
satis�es the anomaly condition since there does not exist any gauge group.

6.1.2. A III→ IV model

Let us set µf = 1, µg = 2. �en a type III singularity is �bered over Σ1. �erefore there is an SU(2)

gauge group present in this theory. �e discriminant factors in the following fashion:

∆ = z3
1 · (4f3

0 + 27g2
0z1).

So the codimension two enhancement points are located at z1 = 0 = f0. Since f0 ∈ O(11) the
number of enhancement points is B1 = 11. �e behaviour of Σ0 near P1 can be locally described by
f3

0 + z1 = 0 which is smooth and ε1 = −1. Since f0 and g0 are generic they do not vanish at the
enhancement points which means that the intersection multiplicity µ1(f, g) vanishes. �e topological
Euler characteristic of the �ber over points P1 is given by 4 since the �ber is a full type IV �ber indeed
without any nodes deleted. For details see appendix A. All in all, χtop(Y3) = −456 and the rank of
our gauge group is rk(G) = 1 which gives nH0 = 232. �e adjoint representation of SU(2) has
dimension nV = 3. �us, 273− (232− 3) = 44 hypermultiplets are needed to cancel the anomaly.
Since a gauge group is present the hypermultiplets have to organise in representations of it. In the case
at hand there must be four states per locus which means that there live two copies of the fundamental
representation at every codimension-two locus. In appendix A we resolve the model explicitly and
show how these two fundamental representations per codimension-two locus can be understood in
terms of M2-wrappings. All results are in perfect match with [GM00] in which the same model has
been analysed.
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6.1. Smooth and Resolvable Models

6.1.3. A III→ I∗0 Model

In this model we set µf = 1, µg = 3. �e e�ect compared to the previous model is that the �ber
enhances from type III to type I∗0. �e discriminant has essentially the same form,

∆ = z3
1 · (4f3

0 + 27g2
0z

3
1).

such that B1 = 11. In fact all contributions to χtop(Ỹ3) remain the same except for χtop(XP1) and
ε1. Taking a look at the residual discriminant we see that ε1 = 3 (see (5.10)). In order to compute
χtop(XP1) one has to resolve the model, which is also done in appendix A. �en the proper transform
PT at the singular locus takes the form:

PT |e0→0,a4→0 = y2 − e1f1x
3,

PT |e1→0,a4→0 = y2.

�e �ber has only two components which intersect in one point. It is a type I∗0 �ber with three nodes
deleted. �is means that the topological Euler characteristic is now 3. In (7.1) all changes compared
to the previous model cancel, χtop(Ỹ3) remains the same and by implication nHuncharged does so as well.
Note that the M2-wrapping at codimension-two works exactly the same way as in the previous model
since the curve PT |e1→0,a4→0 is a non-reduced object of multiplicity two and can be wrapped two
times.
All in all this model is very similar to the one presented in section 6.1.2 as it has the same number of
uncharged and charged hypermultiplets and the same gauge group.

6.1.4. A IV→ I∗0 Model

For this enhancement type we have to choose µf = 2 = µg . A�erwards this model works completely
analogous to the preceding ones. �e only issue is the value of χtop(XP1). �e naı̈ve value for a
type I∗0 �ber is χtop(I∗0) = 6. It is shown in appendix A that this is actually the correct choice. �e
singularity characteristic number ε1 has been computed in [GM00] and is given by ε1 = 2. �e gauge
group of the model is SU(3), i.e. rk(G) = 2 and nV = 8. Pu�ing things together one observes that
the anomaly vanishes if there are three fundamental representations located at each codimension-two
enhancement point. �is is in perfect agreement with the results in [GM00].

6.1.5. Gauge Anomalies

As we know from chapter 3 six-dimensional supergravity does not only su�er from gravitational but
also from gauge and mixed anomalies. Let us �nally check if the found spectrum respects the anomaly
cancellation constraints coming from these anomalies, too. We will show that the found charged part
of the spectra (see table 6.1) is already determined by the following assumptions: Consider P2 as base
space for the elliptic �bration. Assume that there are B1 = 11, 8 codimension-two enhancement
points, respectively, and that only fundamental representations appear. �e gauge group shall be
SU(2), SU(3), respectively. With these assumptions we can deduce that there must be two funda-
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6. Models With One 7-brane

(µf , µg) (0, 0) (1, 2) (1, 3) (2, 2)
m — 3 3 4

Enhancements — III→ IV III→ I∗0 IV→ I∗0
Gauge Group — SU(2) SU(2) SU(3)
nV = dim(G) — 3 3 8
rk(G) — 1 1 2

h1,1(Ỹ3) 2 3 3 4
B1 0 11 11 8
χtop(XP1) — 4 3 6
ε1 — −1 3 2

χtop(Ỹ3) −540 −456 −456 −408

UnlocUnch Hypers nH0 273 232 232 209
LocCh Hypers nHch 0 44 44 72
Representation — 2×fund. 2×fund. 3×fund.

273− (nH0 + nHch − nV ) 0 0 0 0

Table 6.1.: Smooth or resolvable models.

mental representations located at each codimension-two locus in theSU(2), SU(3) case, respectively.

To this end the constraints (3.4) to (3.8) are combined with the F-theory-supergravity identi�cations
(4.6) and (4.7). Since our base isP2 the vector a is identi�ed byKP2 = −3H whereH is the hyperplane
class. �e index i runs over the non-abelian factors of the gauge group. Here we have i = 1 because
our models have only one gauge group factor. �us we can drop the index i in this case for be�er
readability. b is identi�ed with the cohomology class of Σ1. Since there is only one gauge group
factor the constraint (3.8) is not present. Let us plug in the group theoretic quantities AR, BR and
CR which are displayed in table 6.2. Moreover λSU(n) = 1 and nfund. = 2B1 for the SU(2) case and
nfund. = 3B1 for the SU(3) case. In the SU(2) case we have:

9 = (−3H) · (−3H) = a · a ?
= 9− nT = 9 X,

−3 = (−3H) ·H = a · b ?
=
λ

6

(
AAdj. −

∑
R

nRAR

)
= 1

6 · (4− 2 · 11 · 1) = −3 X,

1 = H ·H = b · b ?
=
λ2

3

(∑
R

nRCR − CAdj.

)
= 1

3 · (2 · 11 · 1
2 − 8) = 1 X.

�e constraints in the SU(3) case are:

9 = (−3H) · (−3H) = a · a ?
= 9− nT = 9 X,

−3 = (−3H) ·H = a · b ?
=
λ

6

(
AAdj. −

∑
R

nRAR

)
= 1

6 · (6− 3 · 8 · 1) = −3 X,

1 = H ·H = b · b ?
=
λ2

3

(∑
R

nRCR − CAdj.

)
= 1

3 · (3 · 8 ·
1
2 − 9) = 1 X.
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6.2. �e I1 Conifold Model

AR BR CR

Fund. 1 0 1/2
Adj. 4 0 8

(a) SU(2)

AR BR CR

Fund. 1 0 1/2
Adj. 6 0 9

(b) SU(3)

Table 6.2.: �e group theoretic constants AR, BR and CR for SU(2) and SU(3).

All in all, we see that gauge anomaly cancellation requires two and three copies of the fundamental
representation at each locus in the SU(2) and SU(3) case, respectively. �is is exactly what we found
in the calculations which have led to table 6.1.

6.2. The I1 Conifold Model

A�er this warm-up exercise we are ready to face our �rst non-resolvable model. We consider the I1
conifold Tate model since we know from e.g. [BCV14] that there is exactly one uncharged hypermul-
tiplet located at the I1 → I2 enhancement points [BCV14].
�e appropriate Tate model has vanishing orders (a1, a2, a3, a4, a6)|z1→0 = (0, 0, 1, 1, 1) along z1

which describes the divisor Σ1 in the base. In this model the discriminant ∆ splits into two parts Σ0

and Σ1:

∆ = 1
16 z1

(
a6 (a2

1 + 4 a2)3 + z1 · (. . .)
)
.

�us there are two types of codimension-two enhancement points: {z1 = 0}∩{a2
1 +4 a2 = 0} (called

P1) and {z1 = 0}∩{a6 = 0} (calledP2). �ere are six points of typeP1 and 17 points of typeP2. AtP1

the �ber enhances from I1 to II, i.e.χtop(XP1) = 2. AtP2 there exists no small resolution (see [GM00]).
�erefore, we set χtop(XP2) = χtop(type I1) = 1. �e intersection multiplicity µP1 = 2, µP2 = 0

and ε1 = −1 = ε2 (table 4 in [GM00]). All in all, χtop(Ỹ3) = −523.
At this point note that this model is not resolvable because there is no gauge group associated to the
I1 �ber. �erefore it remains singular and one has to apply the more general formula to compute the
number of complex structure deformations CxDef (see equation (5.2)).
In the case at hand the singularity at P1 has the local form z2 + x2

1 + x2
2 + x2

3 = 0 which has Milnor
number 1 (see section 5.5). �us the number of complex structure deformations is:

CxDef(Y3) = 2 + 1
2 · 523 + 1

2 · 17 · 1 = 272.

As always there is also the universal hypermultiplet such that nH = 273 which completes the
anomaly condition.
We observe that the Milnor number at the codimension-two singularity coincides with the number of
expected uncharged localised hypermultiplets. �us this model is a strong indicator that our assertion
in section 5.1 that the number of uncharged localised hypers is given by the Milnor number of the
respective singularity is true.
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6. Models With One 7-brane

(µf , µg) (1, 1) (2, 1)
m 2 2

Enhancements II→ III II→ IV
h1,1(Ỹ3) 2 2
B1 17 17
χtop(XP1) 2 2
ε1 −1 2

χtop(Ỹ3) −506 −506
a 3 3
mP 2 2

UnlocUnch Hypers nH0 239 239
LocUnch Hypers nHLocUnch 34 34

273− (nH0 + nHLocUnch) 0 0

Table 6.3.: Non-resolvable models with trivial gauge group. a characterises the form of the
codimension-two singularity: za + x2

1 + x2
2 + x2

3 = 0. mP denotes the corresponding
Milnor number.

6.3. Non-resolvable Models with Trivial Gauge Group

In this section we would like to consider two models with trivial gauge group. We chose a type II
elliptic curve �bered over the divisor Σ1. It shall enhance to type III and type IV. �is is achieved by
se�ing µf = 1 = µg for the �rst model and µf = 2, µg = 1 for the second model. �e discriminants
are given by:

∆1 = z2
1 ·
(
27g2

0 + 4z1f
3
0

)
∆2 = z2

1 ·
(
27g2

0 + 4z4
1f

3
0

)
With our knowledge about ε we directly observe ε = −1 in the �rst model and ε = 2 in the second
model. �e intersection multiplicity µ(f, g) vanishes again since f0, g0 are generic. �e topological
Euler characteristic of the �ber over the enhancement points is χtop(XP1) = 2, the χtop of the type II
�ber, since both models are not resolvable. With the help of (6.1) we �nd χtop(Ỹ3) = −506 for both
models.

�e singularity at the codimension-two loci is of the form z3 + x2
1 + x2

2 + x2
3 = 0 which has Milnor

number 2. �us, the number of complex structure deformations is:

CxDef(Y3) = 2 + 1
2 · 506 + 1

2 · 17 · 2 = 272.

As always there is also the universal hypermultiplet such that nH = 273 which completes the
anomaly condition. �ese 273 hypermultiplets split into 17 · 2 = 34 localised and 273 − 34 = 239

non-localised ones. All results of this section are summarized in table 6.3.
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6.4. Non-fully-resolvable Models with Non-trivial Gauge Group

(µf , µg) (1, 4) (1, 5) (1, 7)
m 3 3 3

Enhancements III→ I∗0 III→ I∗0 III→ I∗0
Gauge Group SU(2) SU(2) SU(2)
nV = dim(G) 3 3 3
rk(G) 1 1 1

h1,1(Ỹ3) 3 3 3
B1 11 11 11
χtop(XP1) 3 3 3
ε1 7 11 19

a 2 3 5
mP 1 2 4
χtop(Ỹ3) −445 −434 −412

UnlocUnch Hypers nH0 221 210 188
LocUnch Hypers nHLocUnch 11 22 44

LocCh Hypers nHch 44 44 44
Representation 2×fund. 2×fund. 2×fund.

273− (nH0 + nHch + nHLocUnch − nV ) 0 0 0

Table 6.4.: Non-resolvable models with non-trivial gauge group. a characterises the form of the
codimension-two singularity: za + x2

1 + x2
2 + x2

3 = 0. mP denotes the corresponding
Milnor number.

6.4. Non-fully-resolvable Models with Non-trivial Gauge Group

Finally we would like to increase complexity a bit and consider models which are not resolvable and
have a non-trivial gauge group. It is expected that at codimension-two loci both charged hypermulti-
plets (via M2-brane wrappings) and uncharged hypermultiplets (arising from the residual singularity)
live.
We will analyse models with III → I∗0 enhancements. �ey are summarized in table 6.4.1 To these
models the same logic applies as to the previous ones except the fact that one has to take care of both
charged and uncharged hypermultiplets located at codimension two. For details of the computation
the reader is referred to appendix A.
Note that also the considerations about the gauge anomaly carry over. Again we have G = SU(2)

and B1 = 11. �is leads to the same prediction, namely two fundamental hypermultiplets located at
each enhancement point (see section 6.1.5).

1Note that we skip the (1, 6)-model. �is is due to the fact that we do not know how to compute CxDef in this case since
our formulae hold only for rational homology manifolds which is not the case here (see [AGW16]).
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7. Models With Two Identical 7-branes

�e analysis of F-theory models with one brane is generalized to models with two identical branes
in generic position to each other, i.e. models with two identical gauge group factors. �is provides a
richer structure of singularity types and geometry of the �bration. First we generalize the relevant
formulae to two identical branes. �en we apply them to several classes of models.
We will consider models with two identical branes wrapped on the divisors Σ1 and Σ2 which shall
be described by the vanishing locus of the two variables: z1 and z2. Technically these models are
de�ned via the requirement that f and g in the Weierstrass model vanish to certain orders along the
divisors. Since the two branes shall be identical we need two numbers to specify a model. We employ
the following notation: �e model with f = (z1z2)µf f0 and g = (z1z2)µgg0 is called [µfµg]-model.

7.1. Calculation of χtop

One essential ingredient of our considerations above was the topological Euler characteristic of the
total (elliptically �bered) space Y3 which contributes to the number of uncharged hypermultiplets.
However formula (5.8) is speci�ed to models in which the discriminant splits into two irreducible
parts, Σ0 and Σ1. Our task now is it to generalize the computation to a threefold spli�ing of the
discriminant: Σ0,Σ1 and Σ2 where the �bers over Σ1 and Σ2 are identical.
Going back to the derivation, we started with four contributions to the topological Euler characteristic
(see (5.4) to (5.7)). �e generalization to two identical branes goes as follows.

• �e vanishing orders of ∆ along Σ1 and Σ2 are equal and denoted again by m.

• �ere are two types of codimension-two enhancement loci. First, there is one point where the
branes intersect Σ1 ∩ Σ2 which is referred to as R. Second, there are B loci in Σ0 ∩ Σ1 and
the same number in Σ0 ∩ Σ2 according to the assumption that the situation is symmetric in
Σ1 ↔ Σ2. �e set of all points in the intersection of the residual discriminant and Σ1 and Σ2

is called P .

• �ere is an additional contribution to the topological Euler characteristic from the enhancement
over R: χtop(π−1(R)) = 1 · χtop(XR).

• Contribution (5.5) which took the topology of the brane without all enhancement points into
account becomes:

χtop
(
π−1

(
(Σ1 ∪ Σ2) \ P \R

))
= 2 · χtop

(
π−1(Σ1 \ P1 \R)

)
= 2m ·

(
2− 2g(Σ1)− (B + 1)

)
.
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7. Models With Two Identical 7-branes

• Contribution (5.6) relies on the fact that Σ0 ∈ −12KB − mΣ1 in the old situation. Here,
Σ0 ∈ −12KB −mΣ1 −mΣ2 = −12KB − 2mΣ1. �erefore we have to replace m→ 2m.

• Similarly one has to replace µf → 2µf and µg → 2µg in the formula for the number of cusps.

• With the same argument as before the intersection multiplicity µi(f, g) can be set to zero.

�en the contributions to χtop(Y3) are:

• χtop
(
π−1(P )

)
= 2B · χtop(XP ).

• χtop
(
π−1(R)

)
= χtop(XR).

• χtop
(
π−1

(
(Σ1 ∪ Σ2) \ P \R

))
= 2m · (2− 2g − (B + 1)).

• χtop
(
π−1(Σ0 \Q \ P )

)
= −11 · 12K2

B + 2mKB · Σ1 + 4m2 Σ2
1 + 4mΣ1 · Σ0 + 2 εB + C .

• χtop
(
π−1(Q)

)
= 2C with the number of cuspsC = 24K2

B+
(

8µg+12µf

)
KB ·Σ1+4µfµg Σ2

1.

All in all, χtop is given by:

χtop(Ỹ3) = −540 + χtop(XR) + 2B
(
χtop(XP ) + ε

)
+m ·

(
140− 4m− 2B

)
−72µg − 108µf + 12µfµg.

(7.1)

For the [00]-model, i.e. the general Weierstrass model the formula reduces to χtop(Ỹ3) = −540 which
is the correct value.

7.2. The [11]-model

Let us start out with the [11]-model and work our way forward to more complicated models. By
de�nition, µf = 1 = µg . �e discriminant reads:

∆ = z2
1︸︷︷︸

Σ1

z2
2︸︷︷︸

Σ2

(27g2
0 + 4z1z2 f

3
0 )︸ ︷︷ ︸

Σ0

.

We read o� m = 2. �e �ber over Σ1 and Σ2 is type II (see table 4.1). So we do not have a gauge
group in this model. When we approach the points where g0 = 0 the �ber enhances to type III.
Since g0 ∈ O(18 − 2) there are B = 16 such points. Since the model is not resolvable we have to
set χtop(XP ) = 2 = χtop(XR). Finally near a point P the residual discriminant Σ0 takes the form
g2

0 + zi = 0 if one sets all irrelevant prefactors to one. Because this equation de�nes a smooth curve,
ε = −1.
Plugging all these values into (7.1) we �nd χtop(Ỹ3) = −474. From equation (5.2) we obtain that
there are 239 + 1

2

∑
mP complex structure deformations. As in the one brane model with µf =

1 = µg the local form of the singularity at all codimension-two enhancement loci is given by z3 +

x2
1 + x2

2 + x2
3 = 0 which has Milnor number 2. �us there are 272 complex structure deformations

and 273 uncharged hypermultiplets. Since there are no gauge bosons present this spectrum has no
gravitational anomalies.
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7.3. �e [n1]-models (2 ≤ n ≤ 6)

7.3. The [n1]-models (2 ≤ n ≤ 6)

Here we follow the same line of thought. Since f, g vanish to order n, 1 along each brane, respectively,
the discriminant is:

∆ = z2
1z

2
2

(
27g2

0 + 4 (z1z2)3n−2 f3
0

)
.

�erefore (f, g,∆) vanish to orders (n, 1, 2), i.e. m = 2, at codimension-one along each brane. �is
corresponds to �ber type II, i.e. there is no gauge group involved and the model cannot be resolved.
�ere are two di�erent enhancement loci. First, at z1, g0 → 0 and z2, g0 → 0 the vanishing orders
increase to (n, 2, 4) and second at z1, z2 → 0 they increase to (2n, 2, 4). Both correspond to �ber
type IV. Since g0 is inO(18− 2) there are 32 points in the �rst class (B = 16) and one point where the
two branes meet. Since the model is not resolvable we have to set χtop(XR) = 2 = χtop(XP1). With
these values (7.1) simpli�es to:

χtop(Ỹ3) = −346− 96n+ 32 ε.

�e remaining task is to determine ε. �e curve Σ0 takes the form g2
0 +z3n−2

1,2 = 0 near an intersection
locus with Σ1 or Σ2. Hence, ε = 3n − 4 (see (5.10)). �is cancels the n-dependence of χtop(Ỹ3)

and we end up with the value χtop(Ỹ3) = −474 for all n ≥ 2. �e local form of the singularity
of both enhancement types is the same as in the previous model including the Milnor number of
the singularities. �us we �nd 273 uncharged hypermultiplets generated by the complex structure
deformations.

Remark. One might wonder why the vanishing order of f is restricted to be smaller than 6 although
all n dependency cancels. �is is due to the fact that f ∈ O(12). For n = 6 the section f is completely
�xed and does not have a generic part any more. Higher n are obviously not possible.

7.4. The [1n]-models (n > 1)

Let us outline the general structure of the models and then look at them in turn. �e discriminant is
given by:

∆ = z3
1z

3
2

(
4f3

0 + 27 (z1z2)2n−3 g2
0

)
. (7.2)

�e �ber over the branes is type III (vanishing orders (f, g,∆) = (1, n, 3)). �erefore the gauge
group of the model is G = SU(2)× SU(2). At the intersection locus Σ1 ∩ Σ2 we observe a III→ I∗0
enhancement. �e other enhancement locus (Σ0 ∩Σ1 and Σ0 ∩Σ2) has a type IV �ber for n = 2 and
a type I∗0 �ber for n ≥ 3. �e integer B equals ten due to the vanishing orders of f along Σi.
With this information we are in the position to determine the ma�er spectrum completely employing
the anomaly constraints for both the gravitational and the gauge anomalies (see equations (3.3) to
(3.8)). Recall that the necessary group theoretic quantities AR, BR and CR of SU(2) are given in
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7. Models With Two Identical 7-branes

table 6.2.

• Constraint (3.4) is trivial.

• Constraint (3.5) is satis�ed for KB = −3H and nT = 0.

• From constraint (3.6) and (3.7) we can conclude that we need two fundamental representations
at every zi = 0 = f0 locus and two ma�er �elds in the fundamental at the brane intersection
locus.

• From constraint (3.8) it is clear that we need one bifundamental representation at the brane
intersection locus.

• From enhancement type III the theory receives gauge group SU(2)×SU(2) which comes with
two times three gauge bosons (nV = 6) and as always there are no tensor multiplets (nT = 0)
in the theory.

• All in all there must be four charged hypermultiplets at the brane intersection locus and four
charged hypermultiplets at every other codimension-two locus (in total ncharged = 4 + 20 · 4 =

84). �is means that there must be 195 uncharged hypermultiplets either from the complex
structure moduli or from localised uncharged singlets due to additional singularities.

In the following we would like to �nd this multiplet structure explicitly via resolving the models,
computing χtop(Ỹ3) and counting M2-brane wrapping possibilities. As we already did for the one
brane models we would like to rewrite the models in Tate form and perform a toric resolution (see
appendix B):

• In all models m = 3 and B = 10.

• Codimension-two enhancements: In model [12] there is a III→ IV enhancement at Σ0 ∩Σi. At
Σ1∩Σ2 and at all codimension-two loci of the other models we observe a III→ I∗0 enhancement.
Note that locus Σ0 ∩ Σi is still singular for the [14] and the [15] model. In most cases parts of
the naı̈vely expected nodes in the �ber are deleted. �e resulting χtop is displayed in table 7.1.

• �e gauge group is SU(2)× SU(2). �erefore, nV = 2 · 3 = 6 and h1,1 = 2 + 2 = 4.

• ε1 is computed as usual (see section 5.3).

• At each Σ0 ∩ Σi locus there live two fundamental representations of SU(2) and at Σ0 ∩ Σ1

there is a bifundamental of SU(2) × SU(2) located. In the appendix it is shown how these
states can be interpreted in terms of M2-branes.

• �e rest of the results are collected in table 7.1.

Having done the groundwork we can plug all values into (7.1) and compute the topological Euler char-
acteristic of our �brations (see �gure 7.1). �e details of the computation are completely analogous
to the one brane case.
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7.4. �e [1n]-models (n > 1)

(µf , µg) (1, 2) (1, 3) (1, 4) (1, 5)

χtop(XP1) 4 3 3 3
χtop(XR) 4 4 4 4
ε1 −1 3 7 11

a – – 2 3
mP 0 0 1 2
χtop(Ỹ3) −380 −380 −360 −340

UnlocUnch Hypers nH0 195 195 175 155
LocUnch Hypers nHLocUnch – – 20 40

LocCh Hypers nHch 84 84 84 84

273− (nH0 + nHch + nHLocUnch − nV ) 0 0 0 0

Table 7.1.: Models with non-trivial gauge group and two branes.

We observe that the gravitational anomaly condition vanishes in all cases. �is con�rms the math-
ematical fact that one has to take the residual singularities in terms of their Milnor numbers into
account when computing the complex structure deformations. �e whole picture remains consistent.
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8. Conclusion and Outlook

To �nish this work let us recapitulate our �ndings and main insights. We have studied F-theory on
elliptically �bered Calabi-Yau threefolds with a special type of �bral singularities, type II �bers (in
Kodaira’s classi�cation of singular elliptic �bers), at codimension-one which do not have a gauge
group associated to them. �erefore it is not possible to resolve the singularity by introducing new
�bral divisors which would lead to a gauge group with non-zero rank. Additionally we analysed
models with type III �bers at codimension one, i.e. gauge group SU(2), which showed singularities
in the �ber even a�er performing the blow-up which is possible since there is a gauge group in this
class of models.
It is known that all uncharged hypermultiplets are counted by the number of complex structure de-
formations which give rise to both non-localised and localised states. We have shown that if one
includes the contribution from the terminal singularities in form of their Milnor number, the mod-
els are consistent, i.e. the complex structure deformations contributed exactly the correct number of
hypermultiplets to cancel the gravitational anomaly.
We have addressed the question how the complex structure moduli are distributed into localised and
non-localised hypermultiplets. �e problem can be faced from two sides. First, the analysis of the
I1 conifold model of which we know that there lives one hypermultiplet at each singularity showed
that the number of localised hypers coincides with the Milnor number. Second, we found strong
mathematical arguments that the number of versal complex deformations, i.e. deformations which
deform the singularity, is given by the Milnor number. �e rest, i.e. CxDef(Y3) −

∑
P mP , are the

unlocalised uncharged hypermultiplets. �is gives an intuitive interpretation of the situation and
explains why the total number of hypermultiplets is distributed in this fashion.
�ere are many ways to continue the path of this work. �e most obvious idea is to consider other
models which have a richer singularity structure and work out the details in order to show that the
above assertion can be applied as well. Second, one could add an interpretation of the singularity
in terms of M-theory degrees of freedom. In mathematical terms one would have to perform a non-
�at resolution and analyse the �ber. Additionally the utilized mathematical theorems hold only for
rational homology manifolds. It is not clear how to compute the number of complex structure defor-
mations for more general manifolds. Moreover one could simply count the dimension of the vector
space of homogeneous polynomials f0 and g0 which should equal the number of deformations which
leaves the singularity invariant. However one has to be aware of the di�erence between toric and
non-toric deformations. �erefore the naı̈ve counting gives the wrong answer. Finally it would be
worth to transfer our calculations to compacti�cations to four dimensions, i.e. compute the number of
complex structure moduli and versal deformations of a Calabi-Yau fourfold. �is is very challenging
since the anomaly constraints in six dimensions are by far more informative than in four dimensions.
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A. Toric Resolution of Models With One Brane

We want to add some interpretation to the analysis in the main text. �ere must be located (amongst
others) charged ma�er representations at the codimension-two loci. �is fact will be reproduced in
terms of M-theory degrees of freedom, i.e. M2-branes. �e blow-up of a F-theory model corresponds
to moving on the Coulomb branch. In other words one breaks the gauge group to its Cartan subgroup.
�en one can observe how the M2-brane wraps various linear combinations of the resolution divisor.
�is illustrates in a very nice way how the adjoint representation at the codimension-one locus, i.e.
the 7-brane, and the ma�er representations at the codimension-two loci come into play.
To do so the prescription is:

• Write the model of consideration in Tate form.

• Perform the toric resolution and �nd the corresponding Stanley-Reisner ideal.

• Compute the singular locus of the resolved model and calculate its associated Milnor number.

• Analyse the codimension-one and codimension-two �bers in terms of their weights under the
Cartan subgroup of the gauge group and �nd the representations: At codimension one an ad-
joint representation and at codimension two ma�er representations.

�is procedure can only be applied to models with non-trivial non-abelian gauge group since one
introduces new �bral divisor classes during the blow-up. �e number of new divisors equals the rank
of the gauge group, i.e. we cannot perform a blow-up along a divisor in the base if there is no gauge
group present or in other words there is no Coulomb branch along we could move.

A.1. Models in Tate Form

We want to rewrite the Weierstrass models presented in the main text in Tate form: We de�ne Tate
models which reproduce the correct vanishing orders of f and g. �en the Tate model is resolved
by introducing resolution divisors. �e advantage of this formulation is that the resolution can be
described in terms of toric geometry which we will desperately need.
�e Tate form of an elliptic curve is given by:

y2 + a1 xyz + a3 yz
3 = x3 + a2 x

2z2 + a4 xz
4 + a6 z

6, (A.1)

where the an are sections of O(3n). In contrast recall that an elliptic curve in Weierstrass form is
given by:

y2 = x3 + fx2z4 + gz6,
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(µf , µg) a1 a2 a3 a4 a6

(1, 2) 1 1 1 1 2
(1, 3) 1 2 2 1 3
(1, 4) 2 3 2 1 4
(1, 5) 2 4 3 1 5
(1, 6) 3 5 3 1 6
(1, 7) 3 6 4 1 7
(2, 2) 1 1 1 2 3

Table A.1.: Vanishing orders of the sections ai along the locus Σ1. �e gauge group is SU(2) except
for the last model which has gauge group SU(3).

where f, g are sections ofO(12),O(18), respectively. It can be shown that the parameters of the Tate
form and the Weierstrass form are related in the following fashion:

f = − 1
48(b22 − 24 b4), g = − 1

864(−b32 + 36 b2b4 − 216 b6),

where the bn are sections of O(3n). �ey take the form:

b2 = a2
1 + 4a2, b4 = a1a3 + 2a4, b6 = a2

3 + 4a6.

In order to reproduce e.g. vanishing orders µf = 1, µg = 2 one has to set:

ai = z1ãi for i ∈ {1, 2, 3, 4},

a6 = z2
1 ã6.

�is has to be done for all models we considered in the main text. All choices for the vanishing orders
of the ai for all models are collected in table A.1. Having �xed the vanishing orders relabel ãi → ai

and keep in mind that the new ai are not the full Tate sections.

A.2. Toric Blow-up and Stanley-Reisner Ideal

�e next step is to perform the blow-up and compute the associated Stanley-Reisner ideal. In our
models there occur exactly two di�erent gauge groups: SU(2) and SU(3). For SU(2) we have to
introduce one additional divisor and for SU(3) the number of Kähler moduli has to increase by two
according to the rank of the two groups.

Since the models are singular at x = y = z1 = 0 the correct way to do the blow-up in the SU(2)-case
is:

x→ e1x, y → e1y, z1 → e0e1.
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A.3. Residual Singular Locus and Associated Milnor Number

x y z e0 e1

[Z] 2 3 1 · ·
[E1] −1 −1 · −1 1

(a) Fiber type III (SU(2))

x y z e0 e1 e2

[Z] 2 3 1 · · ·
[E1] −1 −1 · −1 1 ·
[E2] −1 −2 · −1 · 1

(b) Fiber type IV (SU(3))

Table A.2.: Toric weights for the �ber ambient space.

For SU(3) one has to replace:

x→ e1e2x, y → e1e
2
2y, z1 → e0e1e2.

A�er doing so the hypersurface equation (A.1) factorises into powers of e1 and e2 and the proper
transform which we denote by PT . It can be viewed as a hypersurface in a toric �ber ambient space
with coordinates x, y, z, e0, e1(, e2) and toric weights displayed in table A.2. However the hypersur-
face as such is not the most general hypersurface compatible with the scaling relations table B.1. �is
most generic hypersurface would rather give rise to Kodaira �bers of type I2, and not type III. In
particular the dual polytope does not reproduce the monomial in PT . In this sense this type III model
cannot be analysed via the technology of tops [CPR97] [BS03].
However we can still compute the Stanley-Reisner ideal (SRI) of the toric ambient space and analyse
the hypersurface PT by hand. With the help of SageMath (see appendix C) we �nd as possible
SRIs:

SU(2) : 〈ze1, xyz, xye0〉,

SU(3) : 〈ye1, ze1, ze2, xyz, xye0, xe0e2〉.

A.3. Residual Singular Locus and Associated Milnor Number

Most of the would-be singular locus of our models, i.e. critical points of the hypersurface equation
PT = 0, are excluded by the SRIs. However there remain some singularities which are displayed
in table A.3. Note that in the (1, 3)-model the codimension of the singular locus is too high and
therefore non-existent: �e equation e1 = 0 �xes a curve in the base; a6 = 0 determines a point on
this curve; therefore there is no codimension le� to impose a4 = 0. �ese singularities are responsible
for uncharged localised hypers (see main text).

A.4. Analysis of Codimension-One Loci

Now we would like to make explicit how the M-theory M2-brane wraps the di�erent curves in the
resolved �ber which gives rise to massless representations in the F-theory limit.
At codimension-one, i.e. along the 7-brane, we expect one adjoint representation because the gauge
bosons live here.
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A. Toric Resolution of Models With One Brane

(µf , µg) Singular locus a�er resolution a

(1, 2) ∅ –
(1, 3) {e1} ∩ {a6} ∩ {a4} ∩ {x} ∩ {y} = ∅ –
(1, 4) {e1} ∩ {a4} ∩ {x} ∩ {y} 3
(1, 5) {e1} ∩ {a4} ∩ {x} ∩ {y} 3
(1, 6) {e1} ∩ {a4} ∩ {x} ∩ {y} 4
(1, 7) {e1} ∩ {a4} ∩ {x} ∩ {y} 5
(2, 2) ∅ –

Table A.3.: Singular locus of proper transforms. �e singularity parameter a describes the local form
of the singularity: za + x2

1 + x2
2 + x2

3.

For de�niteness let us focus on the SU(2) case. A�erwards we will brie�y present how the analysis
has to be modi�ed if there are more resolution divisors present. So let us analyse the singular �ber
over z1 = 0. �e resolution divisors e0 = 0 and e1 = 0 are rational �brations over the locus z1 = 0

in the base, and π−1(z0) = e0e1. �e �ber over z1 = 0 thus consists of two rational curves, given by
the vanishing of e0 and e1, respectively. Concretely,

P1
A : PT |e0→0 = y2 − e1x

3,

P1
B : PT |e1→0 =

y2 − a4e0 xz
4 + a3e0 yz

3 − a6e
2
0 z

6 (1, 2)-model

y2 − a4e0 xz
4 (1, i)-models for i = 3, . . . , 7.

All equations do not factorize and therefore de�ne two P1s in the �ber called P1
A and P1

B . �ey
intersect at {e0} ∩ {e1} ∩ {y} with order two. We explicitly see a realisation of a type III �ber. Note
that P1

A is intersected by the zero-section of the Weierstrass model. �erefore the massless states we
are interested in must not involveP1

A because states wrappingP1
A would be charged under the Kaluza-

Klein U(1), i.e. such states only give rise to KK modes as opposed to new zero modes by themselves.
It therefore su�ces to consider the remaining P1s.

Next we dive into the representation theory of SU(2). Its simple root isα = −2. �erefore the weight
vector of the adjoint representation is (−2, 0, 2)T . �is is what we expected to �nd from the physics
perspective. �e charge of P1

B under the Cartan of SU(2) is given by the intersection product of the
curve P1

B and the divisor E1 locally de�ned by e1 = 0.

P1
B ◦ E1 = [e1] ·

[
y2 + . . .

]
· [e1] = −[e1] · [y2] · [e0] = −2,

where we used that [e1] = −[e0] (see table A.2). �us if a M2-brane wraps P1
B we obtain a state with

Cartan charge −2. An Anti-M2-brane can wrap P1
B as well inducing a state of Cartan charge 2. �e

state uncharged under the Cartan comes from reduction of the M-theory three-from along P1
B . In this

sense we understand how the adjoint representation over a codimension-one locus with associated
gauge group comes about.
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�e same analysis has to be repeated in our SU(3) case. Here the �bral rational curves are given by:

P1
A : PT |e0→0 = y2e2 − x3e1,

P1
B : PT |e1→0 = y · (z3a3e0 + ye2)

P1
C : PT |e2→0 = a3e0 yz

3 + x3e1 − a6e
3
0e1 z

6 − a4e
2
0e1 xz

4 − a2e0e1 x
2z2

It seems that the second equation factorises. However, the locus {e1} ∩ {y} is forbidden by the SRI.
�e remaining three curves intersect in one point: {e0}∩{e1}∩{e2} which is as we expected a type
IV �ber.

A.5. Analysis of Codimension-Two Loci

�e next step is to take a look at the �ber enhancement at codimension two. �e discriminant in our
cases takes the form:

∆ =

 1
16 z

3
1 ·
(
64 a3

4 +O(z1)
)
, (1, i)-models,

1
16 z

4
1 ·
(
27 a4

3 +O(z1)
)
, (2, 2)-model.

One can read o� that the �ber enhances at a4 → 0, a3 → 0, respectively. As before we concentrate
on the SU(2) cases �rst and treat the SU(3) model a�erwards. In the (1, 2)-model we �nd:

PT |e0,a4→0 = y2 − e1x
3︸ ︷︷ ︸

P1
A

,

PT |e1,a4→0 = y2 + a3e0 yz
3 − a6e

2
0 z

6︸ ︷︷ ︸
P1
B at a4→0

=

(
y + 1

2a3e0 z
3 +

√
a2

3 + 4a6 e0 z
3

)
︸ ︷︷ ︸

P1
b+

·
(
y + 1

2 a3e0 z
3 −

√
a2

3 + 4a6 e0 z
3

)
︸ ︷︷ ︸

P1
b−

.

�e vanishing of a4 enables us to factorize the equation for P1
B . In other words the curve P1

B splits
into two curves, called P1

b+
and P1

b−
, at the codimension-two enhancement locus. All three curves

meet at {e0} ∩ {e1} ∩ {y} with multiplicity one. In Kodaira-Tate language this is called Type IV
which was expected by the vanishing orders of f , g and ∆ (see �gure A.1). For the (1, i)-models with
i > 2 the situation is slightly di�erent:

P1
a : PT |e0,a4→0 = y2 − e1x

3,

P1
b : PT |e1,a4→0 = y2.

�e second equation does not factorise any more. It rather describes a non-reduced curve of multi-
plicity two. However, we will see below that the M2-brane can wrap the curve P1

b twice. �erefore
the situation for all (1, i)-models with i ≥ 2 is the same.
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A. Toric Resolution of Models With One Brane

P1
a

P1
b+

P1
b−

(a) (1, 2)-model

P1
a

P1
b

(b) (1, i)-models, i > 2

Figure A.1.: A�ne Dynkin diagram of the resolved {z1} ∩ {a4} locus. �e red cross denotes the
intersection with the zero-section z = 0 of the Weierstrass model.

Next we need the Cartan weights of P1
b±

and P1
b . P1

a is still intersected by the zero section and does
not play a role in our analysis. Since the equations for the curves are symmetric and since the weights
of have to add up to the weight of P1

B we expect it to be −1. Nevertheless let us check it explicitly:

P1
b ◦ E1 = [e1] · [y2] · [e1] = −2 · [e0] · [y] · [e1] = −2,

P1
b± ◦ E1 = [e1] ·

[
y + 1

2a3e0 z
3 ±

√
a2

3 + 4a6 e0 z
3

]
· [e1] = −[e1] · [y] · [e0] = −1.

If we assume that the curve P1
b can be wrapped twice the situation is completely equivalent in both

cases. �e SU(2) root is given by P1
B which has factorized into P1

b+
+ P1

b−
in the (1, 2)-case. �e

highest weight of the fundamental representation of SU(2) is w = −1 which is either represented
by P1

b+
or P1

b−
(or by one wrapping of “1

2 P
1
b”). In this fashion we can build:

w = P1
b+ :

(
w − α
w

)
=

(
P1
b+
− (P1

b+
+ P1

b−
)

P1
b+

)
=

(
−P1

b−

P1
b+

)
=

(
1

−1

)
,

w = P1
b− :

(
w − α
w

)
=

(
P1
b−
− (P1

b+
+ P1

b−
)

P1
b−

)
=

(
−P1

b+

P1
b−

)
=

(
1

−1

)
.

At �rst sight it looks more that we only get one 2 of SU(2) and its conjugate because the two sets of
curves are just related by a minus sign. However fom the gravitational anomalies we know that there
must be located two fundamental representations at one locus (see table 6.1 and table 6.4). A potential
explanation for this phenomenon is that the fundamental representation of SU(2) has a speciality:
it is real, i.e. it is isomorphic to its conjugate. �erefore one presumably has to count the above to
wrappings independently.

Now let us turn to the SU(3) case. Here the enhancement happens at a3 = 0 = z1 and the �ber takes
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E0

E1

E2

Figure A.2.: A�ne Dynkin diagram of the resolved {z1} ∩ {a3} locus. �e red cross denotes the
intersection with the zero-section z = 0 of the Weierstrass model. �e blue and red colour
indicate how the P1s of the codimension-one �ber split into the ones of the codimension-
two �ber.

the form:

PT |e0→0, a4→0 = y2e2 − x3e1,

PT |e1→0, a4→0 = y2e2,

PT |e2→0, a4→0 = −e1 · (x3 + a2x
2(e0z

2) + a4x(e0z
2)2 + a6(e0z

2)3)

= e1 · (x− e0z
2 · f1(ai)) · (x− e0z

2 · f2(ai)) · (x− e0z
2 · f3(ai)).

�e last equation factors four times. �erefore we observe six components intersecting as shown in
�gure A.2.1 �is is a type I∗0 �ber as expected. Let us denote the black curve in the �gure by P1

a, the
double curve by P1

b and the other red curves by P1
c ,P1

d and P1
e .

SU(3) has two simple roots:

α1 = (−2, 1), α2 = (1,−2).

�ese two roots must be represented by P1
b , i.e. all blue curves, and P1

b + P1
c + P1

d + P1
e , i.e. all red

curves (the colours refer to �gure A.2). Let us check this. �e intersection numbers are given by:

• P1
a ◦ E1 = [a3] · [e1] · [e0] · [y2e2 −���HHHx3e1] = 1 since y cannot vanish (ye1 is in the SRI).

• P1
a ◦ E2 = [a3] · [e2] · [e0] · [���HHHy2e2 − x3e1] = 1 since x cannot vanish (xe0e2 is in the SRI).

• P1
b ◦ E1 = [a3] · [e1] · [e1] · [e2]. Use [e1] = [y] − 2[x] and ye1 is in the SRI. �en, P1

b ◦ E1 =

[a3] · [e1] · (��@@[y]− 2[x]) · [e2] = −2.

• P1
b ◦ E2 = [a3] · [e2] · [e1] · [e2]. Use [e2] = [x] − [y] and ye1 is in the SRI. �en, P1

b ◦ E2 =

[a3] · [e2] · [e1] · ([x]−��@@[y]) = 1.

• P1
c,d,e ◦ E1 = [a3] · [e1] · [e2] · [x− fi(ai)e0z

2] = 1.

1By the way: �e intersecting pa�ern can be computed by SageMath as well. One has to de�ne the ideals associated to
the P1s in Singular, add them in pairs and perform a primary decomposition which returns the irreducible components
of the intersection locus.
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• P1
c,d,e ◦E2 = [a3] · [e2] · [e2] · [x− fi(ai)e0z

2]. Use [e2] = −[e1]− [e0] and xe0e2 is in the SRI.
�en, P1

c,d,e ◦ E2 = [a3] · [e2] · (−[e1]−��ZZ[e0]) · [x− fi(ai)e0z
2] = −1.

All in all,

P1
a : (1, 1), P1

b : (−2, 1), P1
c,d,e : (1,−1),

where the ith entry in the vector denotes the charges under Ei. One simple root must be associated
to the sum of all blue curves and the other to the sum of all red curves. Let us check this:

P1
b : (−2, 1) ←→ α1 X

P1
b + P1

c + P1
d + P1

e : (−2, 1) + 3 · (1,−1) = (1,−2) ←→ α2 X

�e highest weight of the fundamental representation is w1 = (1, 0). �ere are three possibilities to
represent the highest weight in terms of curve wrappings:

−(P1
b + P1

c) : (1, 0), −(P1
b + P1

d) : (1, 0), −(P1
b + P1

e) : (1, 0).

To construct the other states, we have to act with the simple roots on the highest weight vector. Let
us consider the �rst of the above three wrapping possibilities.

w1 :− (P1
b + P1

c),

w1 + α1 :− (P1
b + P1

c) + P1
b = −P1

c ,

w1 + α1 + α2 :− P1
c + P1

b + P1
c + P1

d + P1
e = P1

b + P1
d + P1

e.

Note, that no multiple wrappings appear, all wrappings are either with positive or with negative
orientation, and all combinations of P1s are connected (see �gure A.2). We conclude that we �nd
three copies of the fundamental representation in the resolved �ber which is what we need to cancel
the anomalies (see table 6.4).

A.6. Wrap-up

We have considered Tate models with III→ IV and IV→ I∗0 enhancements, have resolved them and
have shown that the structure of the resolution is such that we �nd two fundamental representations
of the gauge group SU(2) and three fundamentals in the SU(3) model at each codimension-two
enhancement locus. Our �ndings are strengthened by the results of [GM00]. Here the same Tate
models are analysed in terms of their gravitational anomalies and the result that these representations
live at each codimension-two locus coincides. We added an interpretation in the context of M-theory
and M2-brane wrappings and showed that everything nicely �ts together.
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A.7. SageMath Code

Finally, I would like to share the SageMath code with the reader which is an essential part of the
above analysis.

1 singular.lib(’primdec.lib’)
2 singular.lib(’sing.lib’)
3

4 R = singular.ring(0, ’(x,y,z,a1,a2,a3,a4,a6,z1,e0,e1,e2)’, ’dp’)
5 x, y, z, a1, a2, a3, a4, a6, z1, e0, e1, e2 = var(’x,y,z,a1,a2,a3,a4,a6,z1,e0

,e1,e2’)
6

7 def displaySingularLocus(ideal):
8 sL = singular.slocus(ideal.std()).std().minAssGTZ()
9 for i in range(1, len(sL) + 1):

10 sL[i] = sL[i].std()
11 print str(sL) + ”“n”
12

13 def myAnalysis(n1,n2,n3,n4,n6,gaugeGroup = ””,output = 1):
14 ”””
15 Performs the Blow-up, computes the residual singular locus and returns the

proper transform.
16

17 n1,...,n6: vanishing orders of a1,...,a6 in the Tate model
18

19 gaugeGroup: ”SU(2)” or ”SU(3)” or ””. Is needed to perform the correct
blow-up

20

21 output: controls whether any print commands display intermediate steps
22 ”””
23 if output:
24 print ”-------------------------------------------------------------”
25 print ”Analysing model with (”+str(n1)+”,”+str(n2)+”,”+str(n3)+”,”+str(

n4)+”,”+str(n6)+”)”
26 print ”-------------------------------------------------------------”
27

28 Tate = y2 + x*y*z*a1 + y*z3*a3 - (x3 + x2*z2*a2 + x*z4*a4 + z6*a6)
29 p = Tate.substitute(a1=z1n1*a1).substitute(a2=z1n2*a2).substitute(a3=z1n3*

a3).substitute(a4=z1n4*a4).substitute(a6=z1n6*a6)
30

31 if output:
32 print ”Singular locus of Tate form:”
33 displaySingularLocus(singular.ideal(str(p)))
34

35 if(gaugeGroup == ”SU(2)”):
36 p1 = p.substitute(x=e1*x).substitute(y=e1*y).substitute(z1=e0*e1)
37 if output: print ”A possible SRI is: z*e1, x*y*z, x*y*e0.”
38 elif (gaugeGroup == ”SU(3)”):
39 p1 = p.substitute(x=e1*e2*x).substitute(y=e1*e22*y).substitute(z1=e0*e1*

e2)
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40 if output: print ”A possible SRI is: y*e1, z*e1, z*e2, x*y*z, x*y*e0, x*
e0*e2.”

41 else:
42 print ”The Tate form is given by: ” + str(p)
43 return True #This is the end of the analysis since a resolution is not

possible.
44

45 # Remove exceptional divisors from equation
46 PT = singular.ideal(str(p1)).std().minAssGTZ()[2].std()
47 if output:
48 print ”“nProper transform:“n” + str(PT)
49

50 print ’“nSingular Locus of proper transform:’
51 displaySingularLocus(PT)
52

53 print ”“n“n”
54 return PT
55

56 def analyseCodim1(PT,gaugeGroup = ””):
57 print ”ANALYSIS OF CODIMENSION-ONE LOCUS”
58 if(gaugeGroup == ”SU(2)”):
59 E0 = (singular.ideal(’e0’).std() + PT).std()
60 E1 = (singular.ideal(’e1’).std() + PT).std()
61 print ’E0:“n’ + str(E0.minAssGTZ())
62 print ’E1:“n’ + str(E1.minAssGTZ())
63 elif(gaugeGroup == ”SU(3)”):
64 E0 = (singular.ideal(’e0’).std() + PT).std()
65 E1 = (singular.ideal(’e1’).std() + PT).std()
66 E2 = (singular.ideal(’e2’).std() + PT).std()
67 print ’E0:“n’ + str(E0.minAssGTZ())
68 print ’E1:“n’ + str(E1.minAssGTZ())
69 print ’E2:“n’ + str(E2.minAssGTZ())
70 else:
71 print ”ERROR”
72 return False
73 print ”“n”
74

75 def analyseCodim2(PT,gaugeGroup = ””):
76 print ”ANALYSIS OF CODIMENSION-TWO LOCUS”
77 if(gaugeGroup == ”SU(2)”):
78 print ”Analyse a4 --¿ 0.”
79 E0 = (singular.ideal(’e0’).std() + PT + singular.ideal(’a4’).std()).std

()
80 E1 = (singular.ideal(’e1’).std() + PT + singular.ideal(’a4’).std()).std

()
81 print ’E0:“n’ + str(E0.minAssGTZ())
82 print ’E1:“n’ + str(E1.minAssGTZ())
83 elif(gaugeGroup == ”SU(3)”):
84 print ”Analyse a3 --¿ 0.”
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85 E0 = (singular.ideal(’e0’).std() + PT + singular.ideal(’a3’).std()).std
()

86 E1 = (singular.ideal(’e1’).std() + PT + singular.ideal(’a3’).std()).std
()

87 E2 = (singular.ideal(’e2’).std() + PT + singular.ideal(’a3’).std()).std
()

88 print ’E0:“n’ + str(E0.minAssGTZ())
89 print ’E1:“n’ + str(E1.minAssGTZ())
90 print ’E2:“n’ + str(E2.minAssGTZ())
91 else:
92 print ”ERROR”
93 return False
94 print ”“n”
95

96

97 PT12 = myAnalysis(1,1,1,1,2,”SU(2)”,0)
98 PT13 = myAnalysis(1,2,2,1,3,”SU(2)”,0)
99 PT14 = myAnalysis(2,3,2,1,4,”SU(2)”,0)

100 PT15 = myAnalysis(2,4,3,1,5,”SU(2)”,0)
101 PT16 = myAnalysis(3,5,3,1,6,”SU(2)”,0)
102 PT17 = myAnalysis(3,6,4,1,7,”SU(2)”,0)
103 PT22 = myAnalysis(1,1,1,2,3,”SU(3)”,0)
104

105 analyseCodim1(PT12,”SU(2)”)
106 analyseCodim1(PT13,”SU(2)”)
107 analyseCodim1(PT14,”SU(2)”)
108 analyseCodim1(PT15,”SU(2)”)
109 analyseCodim1(PT16,”SU(2)”)
110 analyseCodim1(PT17,”SU(2)”)
111 analyseCodim1(PT22,”SU(3)”)
112

113 analyseCodim2(PT12,”SU(2)”)
114 analyseCodim2(PT13,”SU(2)”)
115 analyseCodim2(PT14,”SU(2)”)
116 analyseCodim2(PT15,”SU(2)”)
117 analyseCodim2(PT16,”SU(2)”)
118 analyseCodim2(PT17,”SU(2)”)
119 analyseCodim2(PT22,”SU(3)”)
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B. Toric Resolution of Models With Two Branes

�e procedure of resolving these models is very similar to the above ones with one brane. �erefore
the calculations are only sketched in this chapter. It turns out that one has to distinguish the cases
for di�erent values of n. We will consider n = 2, 3, 4, 5 since all conceptional features appear already
here.

First note that the vanishing orders of the sections ai in the Tate model are chosen exactly as in the
one brane case (see table A.1). As an example, the model [14] is de�ned by:

a1 = (z1z2)2 ã1, a2 = (z1z2)3 ã2, a3 = (z1z2)2 ã3,

a4 = z1z2 ã4, a6 = (z1z2)4 ã1.

As before relabel ãi → ai to simplify the notation. �is leads to the correct vanishing behaviour of
(f, g,∆) such as to reproduce type III singularities along z1 and z2. In particular,

∆ = 1
16z

3
1z

3
2

(
64 a3

4 +O(z1, z2)
)
. (B.1)

�e singular locus of the so-de�ned Tate form is as expected {x}∩ {y}∩ {z1} and {x}∩ {y}∩ {z2}.
Now let us blow up the model by replacing:

x→ e1f1x, y → e1f1y, z1 → e0e1, z2 → f0f1. (B.2)

�e proper transform PT of the Tate form a�er the blow-up is given by:

PT = −e1f1 x
3 + y2 + a1 e

n
0e
n
1f

n
0 f

n
1 xyz − a2 e

n
0e
n
1f

n
0 f

n
1 x

2z2 + a3 e
n
0e
n−1
1 fn0 f

n−1
1 yz3

−a4 e0f0 xz
4 − a6 e

n
0e
n−2
1 fn0 f

n−2
1 z6 for n ≥ 2.

Again we view PT as a hypersurface in a toric �ber ambient space with coordinates x, y, z, e1, f1, e0,
f0. �e associated toric weights are displayed in table B.1. One possible choice for the Stanley-Reisner

x y z e0 e1 f0 f1

[Z] 2 3 1 · · · ·
[E1] −1 −1 · −1 1 · ·
[F1] −1 −1 · · · −1 1

Table B.1.: Scaling Relations for the �ber ambient space.
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Model Singular locus a�er resolution a

[12] ∅ –
[13] ∅ –
[14]

(
{e1} ∩ {a4} ∩ {x} ∩ {y}

)
∪
(
{f1} ∩ {a4} ∩ {x} ∩ {y}

)
3

[15]
(
{e1} ∩ {a4} ∩ {x} ∩ {y}

)
∪
(
{f1} ∩ {a4} ∩ {x} ∩ {y}

)
3

Table B.2.: Singular locus of proper transforms. �e singularity parameter a describes the local form
of the singularity: za + x2

1 + x2
2 + x2

3.

ideal is (see appendix C):

〈ze1, zf1, e0f1, xyz, xye0, xyf0〉.

B.1. Residual Singular Locus and Associated Milnor Number

�e would-be singular locus of the proper transform for all n is given by:

{e0 = 0, x = 0, y = 0} ∪ {f0 = 0, x = 0, y = 0} ∪ {x = 0, y = 0, z = 0},

which is excluded by the SRI. Additionally there is a singularity at:

{x = 0, y = 0, e1 = 0, a4 = 0} ∪ {x = 0, y = 0, f1 = 0, a4 = 0}

for n ≥ 4. �us PT de�nes a smooth resolution only for n = 2, 3. Note that there are more sin-
gular points if one looks only at the hypersurface equation. However they are located in too high
codimension compared to our three-dimensional �bration and are not present in our case. �e re-
maining singularities are displayed in table B.2. If one takes a look at the proper transform around
these singularities one notices that they take the same form as in the corresponding one brane models.
�erefore the singularity parameter a and thereby the Milnor number is the same. As before these
residual singularities will be the cause of uncharged localised hypers.

B.2. Analysis of Codimension-One Loci

�e model is symmetric in z1 ↔ z2. �us it su�ces to only analyse the Σ1 locus. �e resolution
divisors e0 = 0 and e1 = 0 are rational �brations over the locus z1 = 0 in the base, and π−1z0 = e0e1.
�e �ber over z1 = 0 thus consists of two rational curves, given by the vanishing of e0 and e1,
respectively. Concretely,

PT |e0→0 = −e1f1x
3 + y2,

PT |e1→0 =

y2 − a4e0f0xz
4 − a6e

2
0f

2
0 z

6 for a = 2,

y2 − a4e0f0xz
4 for a > 2.
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�us we have one double intersection at y2 = 0, i.e. Type III which was expected from the Kodaira-
Tate table. At this point we recall that we already have analysed a type III �ber (see appendix A.4).
Here the situation is very similar and all arguments can be adopted in order to understand how the
three gauge bosons of SU(2) come into play in terms of M2-brane wrappings of rational curves in
the resolved �ber and dimensional reduction of the M-theory 3-form.

B.3. Analysis of Codimension-Two Loci

Now consider the loci where the residual discriminant hits the gauge brane z1. �is happens at a4 = 0,
and the �bers take the form:

P1
a : PT |e0→0,a4→0 = −e1f1x

3 + y2,

P1
b± : PT |e1→0,a4→0 =

y2 − a6e
2
0f

2
0 z

6 for a = 2,

y2 for a > 2.

It is allowed to factorize the second equation and take the square root of a6 because codimension-two
loci on the (two-dimensional) base CP2 are points and therefore √a6 is a single-valued quantity (no
branch-cut can be picked up). We are le� with three P1s intersecting once at y = 0 (e0 = 0 = e1). A
triple intersection of order one corresponds to type IV in agreement with the expected Kodaira �ber.
�e resolved �ber is the same as in the one brane case and was displayed in �gure A.1. Note that the
three P1s all intersect in one point (e0 = e1 = y = 0). All other solutions to the above three equations
are either forbidden by the SRI or involve vanishing of fi which does not vanish at this locus.
For a > 2 Kodaira’s classi�cation applied naı̈vely to codimension two predicts a type I∗0 �ber. We
interpret our �ndings above as a degenerate, i.e. monodromy reduced, type I∗0 �ber. �e double P1

b is
the node of multiplicity two in the middle, and there is only one further rational curve given by P1

a,
i.e. three nodes of the full I∗0 �ber are deleted.
�e weights of the curves under the Cartan of the gauge group are computed analogously to the one
brane case. Again we �nd four fundamental representations at each locus with the usual issue that the
fundamental representation of SU(2) is real and therefore we have to count wrapping possibilities
which di�er only by orientation reversal twice.

Next we look at the intersection of the gauge branes. Naı̈ve application of Kodaira’s classi�cation
predicts an I∗0 �ber. Let us check this (note that e0 → 0, f1 → 0 is forbidden by the SRI):

P1
a : PT |e0→0, f0→0 = −e1f1x

3 + y2,

P1
b1,2 : PT |e1→0, f0→0 = y2,

P1
c : PT |e1→0, f1→0 =

y2 − a4e0f0xz
4 − a6e

2
0f

2
0 z

6 for a = 2,

y2 − a4e0f0xz
4 for a > 2.

Again we can interpret this as a monodromy reduced I∗0 �ber, with the second line corresponding to
the middle P1 of multiplicity 2, intersecting the two other curves once (see �gure B.1).
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P1
a P1

c

P1
b1,2

Figure B.1.: A�ne Dynkin diagram of the resolved {z1} ∩ {z2} locus. �e red cross denotes the
intersection with the zero-section z = 0 of the Weierstrass model.

�e next step is to determine the charges of the P1s under the Cartan U(1) × U(1). �ey are given
by the intersection product of the P1s and the resolution divisors E1 and F1 de�ned by e1 = 0 and
f1 = 0, respectively.

• Note that the curve P1
a is intersected by the zero section. As always, the P1 intersected by the

zero section does not give rise to a new state, but rather to a higher KK state of a ground state
accounted for already by the other P1s in the �ber.

• Consider P1
c . First note that from the scaling relations in table B.1 we can conclude that E1 =

−E0 and likewise F1 = −F0, each up to contributions from divisors pulled back from the base
which do not a�ect this computation. �is can be used to calculate the following intersection
products.

– P1
c ◦ E1 = [e1] · [f1] · [y2 − e0f0 . . .] · [e1] = [e1] · [f1] · 2[y] · (−[e0]) = 0 since e0f1 is in

the SRI.

– P1
c ◦ F1 = [e1] · [f1] · [y2 − e0f0 . . .] · [f1] = [e1] · [f1] · 2[y] · (−[f0]) = −2.

�erefore the Cartan charges of P1
c are (0,−2).

• ConsiderP1
b . It is given by the non-reduced object [e1]·[f0]·[y2], so we can think of it as aP1 with

multiplicity 2. �e M2-brane can wrap P1
b one or two times. Let us decompose P1

b = P1
b1

+P1
b2

.
�en P1

b1
and P1

b2
are each given by [e1] · [f0] · [y]. From the scaling relations table B.1 we can

conclude that E1 = 2Z − F1 −X .

– P1
b1
◦E1 = [e1] · [f0] · [y] · [e1] = [e1] · [f0] · [y] · (2[z]− [f1]− [x]). �e SRI contains both

xyf0 and ze1. �erefore P1
b1
◦ E1 = [e1] · [f0] · [y] · −[f1] = −1.

– P1
b1
◦ F1 = [e1] · [f0] · [y] · [f1] = 1.

�erefore the Cartan charges of P1
b1,2

are (−1, 1).

Now we can wrap P1
bi

and allowed, i.e. either holomorphic or anti-holomorphic, linear combinations
with P1

c . P1
c alone is already wrapped in order to give rise to gauge bosons. �e wrappings will

combine to a bifundamental representation of SU(2)×SU(2). �e highest weight of the fundamental
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is w0 = 1 and the weight vector is: (
w0

w0 + α1

)
=

(
1

−1

)
.

We can easily calculate the Cartan charges of various linear combinations of the P1s. �e SU(2)E

root is αE1 = (−2, 0) = P1
b1

+ P1
b2

+ P1
c where the subscripts E and F distinguish the two SU(2)

factors living on Σ1 and Σ2. �e SU(2)F root is αF1 = (0,−2) = P1
c . �e highest weight of the

bifundamental representation is (1, 1) which can be represented by the wrapping −(P1
b2

+ P1
c). We

will see that this choice leads to a consistent picture. Now we can act with αE1 on it which gives the
state (−1, 1) and the curve P1

b1
is wrapped. In the same way we can act with αF1 on the �rst state.

�en we obtain the state (1,−1) where the M2-brane is wrapped on −P1
b2

. Finally, acting with both
roots on the �rst state leads to (−1,−1) and wrapping P1

b1
+P1

c . We see that all wrappings are either
holomorphic or anti-holomorphic linear combinations of the �bral P1s.

(wE0 + αE1 , w
F
0 )

(wE0 , w
F
0 )

(wE0 , w
F
0 + αF1 )

(wE0 + αE1 , w
F
0 + αF1 )

 =


P1
b1

−(P1
b2

+ P1
c)

−P1
b2

P1
b1

+ P1
c

 =


(−1, 1)

(1, 1)

(1,−1)

(−1,−1)

 .

All in all the resolution of the codimension-two singularities of the �bration suggests that there are
four states located at Σ1∩Σ2 which organise into a bifundamental representation of SU(2)×SU(2).
�is perfectly matches the prediction from the anomaly constraints.

B.4. Wrap-up

In this chapter we have rewri�en our two brane models in Tate form and resolved them. We noticed
similarities to the one brane case. Nevertheless it was interesting to see explicitly how the M2-brane
wraps the various rational curves at the locus Σ1 ∩ Σ2 because here both gauge group components
are present and thus the M2-branes appearing here are charged under both factors.
�e respective SageMath code is not wri�en down here because it is very similar to the one brane
case (see appendix A.7).
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C. Computation of Stanley-Reisner Ideal

One important ingredient of the toric resolution was the computation of the Stanley-Reisner ideal
(SRI). It can be computed for every toric space. Its generators describe which variables are not allowed
to vanish simultaneously due to the imposed scaling relations. �e SRI is not unique. Below I share
the SageMath code which computes possible SRIs in our cases.

C.1. Type III

1 # Define toric vectors for x y z e0 e1
2 points = matrix([(1, -1, 0), (0, 1, 0), (-2, -1, 0), (0, 0, 1), (1, 0, 1)])
3

4 # Doublecheck that the chosen vectors satisfy the desired scaling relations
5 print ’Check that chosen vectors are correct:’
6 2*points[0] + 3*points[1] + points[2]
7 -points[0] - points[1] - points[3] + points[4]
8 print
9

10 # Compute triangulation
11 polyhed = Polyhedron(points)
12 p1 = PointConfiguration(
13 points.transpose().augment(vector([0, 0, 0])).transpose())
14 p1 = p1.restricttostartriangulations((0, 0, 0))
15 p1 = p1.restricttofinetriangulations()
16 p1 = p1.restricttoregulartriangulations(True)
17 tria1 = p1.triangulationslist()
18 triangl1 = [[i[:-1] for i in j] for j in tria1]
19

20 # Display Stanley-Reisner ideals
21 print ’Stanley-Reisner ideal after blow-up:’
22 for i in range(len(tria1)):
23 faecher = Fan(triangl1[i], points)
24 toricx = ToricVariety(faecher, coordinatenames=’x y z e0 e1’)
25 print str(i) + ”: ” + str(toricx.StanleyReisnerideal())

C.2. Type IV

1 # Define toric vectors for x y z e0 e1 e2
2 points = matrix([(-1, 0, 0), (0, -1, 0), (2, 3, 0),
3 (2, 3, 1), (1, 2, 1), (1, 1, 1)])
4

5 # Doublecheck that the chosen vectors satisfy the desired scaling relations
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6 print ’Check that chosen vectors are correct:’
7 2*points[0] + 3*points[1] + points[2]
8 - points[0] - points[1] - points[3] + points[4]
9 - points[0] - 2*points[1] - points[3] + points[5]

10

11 polyhed = Polyhedron(points)
12 p1 = PointConfiguration(
13 points.transpose().augment(vector([0, 0, 0])).transpose())
14 p1 = p1.restricttostartriangulations((0, 0, 0))
15 p1 = p1.restricttofinetriangulations()
16 p1 = p1.restricttoregulartriangulations(True)
17 tria1 = p1.triangulationslist()
18 triangl1 = [[i[:-1] for i in j] for j in tria1]
19 print
20

21 # Display Stanley-Reisner ideals
22 print ’Stanley-Reisner ideal after blow-up:’
23 for i in range(len(tria1)):
24 faecher = Fan(triangl1[i], points)
25 toricx = ToricVariety(faecher, coordinatenames=’x y z e0 e1 e2’)
26 print str(i) + ”: ” + str(toricx.StanleyReisnerideal())

C.3. Type III × III

1 # Define toric vectors for x y z e0 e1 f0 f1
2 points = matrix([(1, -1, 0, 0), (0, 1, 0, 0), (-2, -1, 0, 0), (0, 0, 1, 0),
3 (1, 0, 1, 0), (0, 0, 0, 1), (1, 0, 0, 1)])
4 # Doublecheck that the chosen vectors satisfy the desired scaling relations
5 print ’Check that chosen vectors are correct:’
6 2*points[0] + 3*points[1] + points[2]
7 -points[0] - points[1] - points[3] + points[4]
8 -points[0] - points[1] - points[5] + points[6]
9 print

10

11 # Compute triangulation
12 polyhed = Polyhedron(points)
13 p1 = PointConfiguration(
14 points.transpose().augment(vector([0, 0, 0, 0])).transpose())
15 p1 = p1.restricttostartriangulations((0, 0, 0, 0))
16 p1 = p1.restricttofinetriangulations()
17 p1 = p1.restricttoregulartriangulations(True)
18 tria1 = p1.triangulationslist()
19 triangl1 = [[i[:-1] for i in j] for j in tria1]
20

21 # Display Stanley-Reisner ideals
22 print ’Stanley-Reisner ideal after blow-up:’
23 for i in range(len(tria1)):
24 faecher = Fan(triangl1[i], points)
25 toricx = ToricVariety(faecher, coordinatenames=’x y z e0 e1 f0 f1’)
26 print str(i) + ”: ” + str(toricx.StanleyReisnerideal())
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